(TUTH 10:30am -11:50pm, Mayer Hall Addition 4681) Course Syllabus
pdf file
Lecture notes
1D physics -- integrable models, theta term, and bosonization
Lecture 1 : Bethe Ansatz (I) -- 2 magons, Bethe Ansatz equation, string states (bound states)
Further reading : Experimental observation of (many-body) Bethe string excitations
Lecture 2 : Bethe Ansatz (II) -- Many-magon states, factorization of scattering amplitude
Lecture 3 : Bethe Ansatz (III) -- Spin-1/2 antiferromagnetic spin chain,
ground state energy, and spinon excitations
Further reading : Quantum dynamics of spin chain
Supplemental Material : Bethe Ansatz for 1D bosons with
delta-interaction
Supplemental Material : Bethe Ansatz for 1D fermions -- Yang-Baxter equation
Lecture 4 : Spin coherenent state path integral
Lecture 5 : Renormalization group for the
classic non-linear sigma model
Lecture 6 : Theta term, Haldane conjecture, AKLT and string order
Lecture 7 : 2D Ising model, Quantum Ising chain, Jordan-Wigner transformation, Kramers-Wannier duality
Supplemental Material : Correlation function of Ising model
Lecture 8 : Bosonization identity,
operator product expansion, correlation functions
Further reading Constructive theory of bosonization
Lecture 9 : Luttinger liquid (I) (spinless) -- Luttinger model, Anomalous scaling dimension
Further readking Field theoretical version of bosonization
Lecture 10 : Luttinger liquid (II) (spinless) -- cosine terms, Sine-Gordon theory, CDW order
Supplemental Material (TBA) : KT transition, Coulomb gas, dielectric renormalization
Supplemental Material (TBA) : Introduction to conformal field theory
Supplemental Material : Helical Luttinger liquid theory
Lecture 11 : Luttinger liquid (III) (spinful) -- spin-charge separation, Mott gap and spin gap
Supplemental Material : Kac-Moody algebra, more on OPE
Supplemental Material : (TBA) Spectra properties of Luttinger liquid
Further reading : Coupled Luttinger liquid -- competing orders
Further reading Baryon type ordering in 1D 4-component Fermi systems
2. Lattice gauge theory
Lecture 12 : Ising gauge theory
Lecture 13 : (TBA) Matter field, Fradkin-Shenker theorem
Lecture 14 : (TBA) 2D compact QED
Lecture 15 : (TBA) Application: quantum dimer model
3. Renormalization group for fermions
Lecture 16 : (TBA) Kondo problem, the poor-man scaling, spin-boson
model
Lecture 17 : (TBA) Fermi liquid theory revisited from the
RG perspective
Lecture 18 : (TBA) Hertz-Millis theory for the itinerant ferromagnetic criticality
Lecture 19 : (TBA) disordered electrons, scaling, non-linear sigma model
Howework assignment
Final project
Back to home
2. Lattice gauge theory
3. Renormalization group for fermions
Howework assignment
Final project
Last modified: Jan 7, 2010.