spinless fermion $t-V$ model

$$
H=-t \sum_{\langle i j\rangle}\left(c_{i}^{+} c_{j}+h \cdot c\right)+V \sum_{\langle i, i+1\rangle} n_{i} n_{i+1}
$$

low enengy continuous model

$$
\frac{1}{a} n_{i}=J_{R}+J_{L}+N^{+} e^{-2 i k_{f} x}+N e^{2 i b_{f} x}
$$

where $J_{R}=\psi_{R}^{\dagger} \psi_{R}, \quad J_{L}=\psi_{L}^{\dagger} \psi_{L}$

$$
\begin{aligned}
& N^{+}=\psi_{R}^{+} \psi_{L} \quad N=\psi_{L}^{+} \psi_{R} \\
\frac{1}{a^{2}} n_{i} n_{i+1}= & J_{R}^{2}+\zeta_{L}^{2}+2 J_{R} J_{L}+N^{+} N e^{-2 i k_{f} r_{i}+2 i k_{f}\left(r_{i}+a\right)} \\
& +N N^{+} e^{2 i k_{f} r_{i}-2 i k_{f}\left(r_{i}+a\right)}+N^{+} N^{+} e^{-4 i k_{f} r_{i}-2 i k_{f} a} \\
& +N N e^{2 i k_{f} r_{i}+2 i k_{f} r_{i}+2 i k_{f} a} \\
: N^{+} N:= & : \psi_{R}^{+} \psi_{L} \psi_{L}^{+} \psi_{R}:=-\psi_{R}^{+} \psi_{R} \psi_{L}^{+} \psi_{L}=-J_{R} J_{L} \\
: N^{+} N^{+}:= & : \psi_{R}^{\dagger} \psi_{L} \psi_{R}^{+} \psi_{L}:=: \psi_{R}^{+}(x) \psi_{R}^{+}(x+\epsilon) \psi_{L}(x+\epsilon) \psi_{L}(x):
\end{aligned}
$$

keep non-chiral part,
G : reciprocal lattice vector

$$
\begin{aligned}
& H_{0}=\int d x v_{F}\left[\psi_{R}^{+}\left(-i \partial_{x}\right) \psi_{R}+\psi_{L}^{+}\left(i \partial_{x}\right) \psi_{L}\right] \\
& \left.\begin{array}{l}
J_{R}(x)=\sqrt{\frac{1}{\pi}} \partial_{x} \phi_{R}(x) \\
\psi_{R}^{+}\left(-i \partial_{x}\right) \psi_{R}=\left(\partial_{x} \phi_{R}\right)^{2}
\end{array}\right\} \begin{array}{l}
\text { lin relation can also be obtained through } \\
\text { fermionic OPE. }
\end{array}
\end{aligned}
$$

Current algebra form
$\Rightarrow H_{0}=V_{F} \pi \int d x\left[: J_{L}^{2}:+:{V_{R}^{2}}_{2}\right\}$ for spinless fermion.

$$
\begin{aligned}
& H_{i m t}= \int d x \\
&+V V\left[1-\cos 2 k_{f}\right]: J_{R} J_{L}: \\
&+e^{-i\left(4 k_{f}-G\right) x-2 i k_{f}}: \psi_{k}^{+}(x) \psi_{k}^{\dagger}(x+\epsilon) \psi_{L}(x+\epsilon) \psi_{L}(x): \\
&+ \text { h.c. }\}
\end{aligned}
$$

bosonic

$$
\begin{aligned}
& J_{L}^{2}+J_{R}^{2}=\frac{1}{\pi}\left[\left(\partial_{x} \phi_{R}\right)^{2}+\left(\partial_{x} \phi_{L}\right)^{2}\right]=\frac{1}{2 \pi}\left[\left(\partial_{x} \phi\right)^{2}+\left(\partial_{x} \theta\right)^{2}\right] \\
& J_{R} J_{L}=\frac{1}{\pi} \partial_{x} \phi_{R} \partial_{x} \phi_{L}=\frac{1}{4 \pi}\left[(2 x \phi)^{2}-\left(\partial_{x} \theta\right)^{2}\right] \\
& \because \\
& \psi_{R}^{+}(x) \psi_{R}^{+}(x+\epsilon)=\frac{1}{2 \pi a} e^{-i \sqrt{4 \pi} \phi_{R}(x)} e^{-i \sqrt{4 \pi} \phi_{R}(x+\epsilon)} \\
& \quad=\frac{1}{2 \pi a} e^{-i \sqrt{6 \pi} \phi_{R}} e^{\left(-\frac{i^{2}}{2} \cdot 4 \pi\left[\phi_{R}(x), \phi_{R}(x+\epsilon)\right]\right.} \\
& \quad=\frac{1}{2 \pi a} e^{-i \sqrt{16 \pi} \phi_{R}} e^{-2 \pi \frac{i}{4} \operatorname{sgn}(-\epsilon)} \\
& \left.\Psi_{L}(x+\epsilon) \psi_{L}(x)=\frac{1}{2 \pi a} e^{-i \sqrt{4 \pi} \phi_{L}(x+\epsilon)} e^{-i \sqrt{4 \pi} \phi_{L}(x)}=\frac{1}{2 \pi a} e^{-i \sqrt{16 \pi} \phi_{L}} e^{\frac{-\dot{j}^{2}}{2} \cdot 4 \pi\left[\phi_{L}(x+\epsilon)\right.} \phi_{L}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{L}(x+\epsilon) \psi_{L}(x)=\frac{1}{2 \pi a} e^{-i \sqrt{16 \pi} \phi_{L}} e^{-2 \pi\left(-\frac{i}{4} \operatorname{sgn}(\epsilon)\right)} \\
& \Rightarrow \psi_{R}^{+}(x) \psi_{R}^{+}\left(x+\epsilon \psi_{L}(x+\epsilon) \psi_{L}(x)=\frac{1}{(2 \pi a)^{2}} e^{-i \sqrt{6 \pi} \phi_{R}} e^{-i \sqrt{16 \pi} \phi_{L}} e^{i \pi \operatorname{sgn} \epsilon}\right. \\
& =\frac{-1}{(2 \pi a)^{2}} e^{-i \sqrt{16 \pi} \phi_{R}} e^{-i \sqrt{6 \pi} \phi_{L}}=\frac{-1}{(2 \pi a)^{2}} e^{-i \sqrt{6 \pi} \phi} e^{\frac{(-i)^{2}}{2} \cdot 16 \pi\left[\phi_{R} \cdot \phi_{L}\right.} \\
& =\frac{-1}{(2 \pi a)^{2}} e^{-i \sqrt{16 \pi} \phi}
\end{aligned}
$$

or we canstart from $N^{+} N^{\dagger}=\left(\frac{i}{2 \pi a}\right)^{2} e^{-i \sqrt{4 \pi} \phi(x)} e^{-i \sqrt{4 \pi} \phi(x+\epsilon)}$

$$
=\frac{-1}{(2 \pi a)^{2}} e^{-i \sqrt{16 \pi} \phi},[[\phi(x), \phi(x+\epsilon)]=0
$$

consistent!

$$
\Rightarrow \begin{array}{rr}
H=\int d x \frac{v_{F} \pi}{2 \pi}\left[\left(\partial_{x} \phi\right)^{2}+\left(\partial_{x} \theta\right)^{2}\right] & \left.\left.+\frac{2 V\left[1-\cos 2 k_{f}\right]}{4 \pi}\right](2 x \phi)^{2}-\left(\partial_{x} \theta\right)^{2}\right] \\
\frac{-2 V}{(2 \pi a)^{2}} \cos \left[\sqrt{16 \pi} \phi+2 k_{f} a+\delta x\right] & \delta=4 k_{f} a-G \\
& -\cdot \frac{\delta}{2}=\left(2 k_{f} a-\pi\right) \\
\cos 2 k_{f}=-\cos \frac{\delta}{2}
\end{array}
$$

$$
\begin{aligned}
& H=\quad \frac{v_{F}}{2} \int d x\left[1+\frac{V a}{\pi v_{F}}\left(1+\cos \frac{\delta}{2}\right)\right]\left(\partial_{x} \phi\right)^{2} \\
&+\left[1-\frac{V a}{\pi v_{F}}\left(1+\cos \frac{\delta}{2}\right)\right]\left(\partial_{x} \theta\right)^{2} \\
&+\int d x \frac{2 V a}{(2 \pi a)^{2}} \cos \left[\sqrt{16 \pi} \phi+\frac{\delta}{2}+\delta x\right] \quad \text { set income } \\
& \Rightarrow H=\frac{v_{E}}{2} \int d x\left[\frac{1}{K}\left(\partial_{x} \phi\right)^{2}+K\left(\partial_{x} \theta\right)^{2}\right]+\frac{g}{(2 \pi a)^{2}} \cos \sqrt{16 \pi} \phi
\end{aligned}
$$

where

$$
\begin{aligned}
v_{c}^{2} & =v_{F}^{2}\left[1-\left(\frac{V a}{\pi v_{F}}\right)^{2} \cdot 4\right] \\
K & =\sqrt{\frac{1-\frac{V a}{\pi v_{F}} \cdot 2}{1+\frac{v a}{\pi v_{F}} \cdot 2}} \Rightarrow k<1-i f \quad V>0 .
\end{aligned}
$$

Next step. I will derive RG for the above sine-Gurden E.q. We Change it to Langrangean.

$$
\mathcal{L}=\int d x d \tau \frac{1}{2 v k}\left(\partial_{t} \phi\right)^{2}-\frac{v}{2 k}\left(\partial_{x} \phi\right)^{2}-\frac{g}{(2 \pi a)^{2}} \cos \sqrt{6 \pi} \phi
$$

imaginary time

$$
\rightarrow \int d x d z \frac{1}{2}\left[\frac{\left.\left(\partial_{\tau} \phi^{\prime}\right)^{2}+\left(\partial_{x} \phi^{\prime}\right)^{2}\right]+\frac{g}{(2 \pi a)^{2}} \cos \beta \phi^{\prime}, \quad \text { where } \phi^{\prime}=\frac{\phi}{\sqrt{k}}}{\beta=\sqrt{16 \pi k}}\right.
$$

action \bar{e}^{-S}, where $\left.S=S_{0}+S_{I}=\frac{1}{2} \cdot \int d x d r\left[\left(\partial_{z} \phi^{\prime}\right)^{2}+\left(\partial_{x} \phi\right)^{\prime}\right)^{2}\right]$

$$
+\frac{g}{(2 \pi a)^{2}} \cos \beta \phi^{\prime} \quad(\operatorname{set} v=1)
$$

Hamiltonian

$$
\begin{array}{ll}
H_{0}=v_{F} \int d x\left(\partial_{x} \phi_{R}\right)^{2}+\left(\partial_{x} \phi_{L}\right)^{2} & \phi=\phi_{R}+\phi_{L} \\
=\frac{v_{F}}{2} \int d x\left(\partial_{x} \phi\right)^{2}+\left(\partial_{x} \theta\right)^{2} & \theta=\phi_{R}-\phi_{L} \\
\text { interaction - finvard scattering } & {\left[\phi(x), \partial_{x} \theta\left(x^{\prime}\right)\right]=-i \delta\left(x-x^{\prime}\right)} \\
\partial_{x} \theta=-\pi_{\phi}
\end{array}
$$

add interaction - forward scattering

$$
H=\frac{v}{2} \int d x \frac{1}{k}\left(\partial_{x} \phi\right)^{2}+K\left(\partial_{x} \theta\right)^{2}=\frac{v}{2} \int d x \frac{1}{k}\left(\partial_{x} \phi\right)^{2}+K \pi_{\phi}^{2}(x)
$$

v and k are constant depends on interaction parameter

$$
\begin{aligned}
& \rightarrow=\pi_{\phi} \dot{\phi}-\mathcal{H} \quad \dot{\phi}=\frac{\partial H}{\partial \pi}=v k \pi_{\phi}(x) \\
&=\frac{\dot{\phi}^{2}}{v k}-\frac{v}{2 k}(2 x \phi)^{2}-\frac{v k}{2}\left(\frac{\dot{\phi}}{v k}\right)^{2} \\
&=\frac{1}{2 k}\left[\frac{1}{v}\left(\frac{\partial \phi}{\partial t}\right)^{2}-v\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \\
& L=\int d x \int d t \frac{1}{2 k}\left[\frac{1}{v}(\partial t \phi)^{2}-v(\partial x \phi)^{2}\right] \\
& \text { define } \int\left\{\begin{array}{l}
\tilde{\phi}=\sqrt{k} \phi=\frac{1}{\sqrt{k}}\left(\phi_{R}+\phi_{L}\right) \Rightarrow \phi_{R}=\frac{\sqrt{k} \tilde{\phi}}{2}+\frac{\tilde{\theta}}{2 \sqrt{k}} \\
\tilde{\theta}=\sqrt{k} \theta=\sqrt{k}\left(\phi_{R}-\phi_{L}\right) \\
\phi_{L}=\frac{\sqrt{k} \tilde{\phi}}{2}-\frac{\sim}{2 \sqrt{k}}
\end{array}\right.
\end{aligned}
$$

under $\tilde{\phi}, \tilde{\theta}$, we have

$$
\left.H=\frac{v}{2} \int d x\left(\partial_{x} \tilde{\phi}\right)^{2}+\left(\partial_{x} \tilde{\theta}\right)^{2} \Rightarrow L=: \frac{1}{2}\left[\frac{1}{v} \frac{\partial \tilde{\phi}^{2}}{\partial t}\right)^{2}-v\left(\frac{\partial \tilde{\phi}^{2}}{\partial x}\right)^{2}\right]
$$

 the original field $\phi_{R} . \phi_{L}$ and $\tilde{\phi}_{R}, \tilde{\phi}_{L}$

$$
\binom{\phi_{R}}{\phi_{L}}=\left[\begin{array}{cc}
\frac{1+k}{2 k} & \frac{k-1}{2 \sqrt{2 k}} \\
\frac{k-1}{2 \sqrt{2}} & \frac{1+k}{2 \sqrt{k}}
\end{array}\right]\left[\begin{array}{l}
\tilde{\phi}_{R} \\
\tilde{\phi}_{L}
\end{array}\right) \text { or }\left[\begin{array}{l}
\tilde{\phi}_{R} \\
\tilde{\phi}_{L}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1+k}{2 \sqrt{k K}} & \frac{1-k}{2 \sqrt{-k}} \\
\frac{1-k}{2 \sqrt{k}} & \frac{1+k}{2 \sqrt{2 k}}
\end{array}\right]\left[\begin{array}{l}
\phi_{R} \\
\phi_{L}
\end{array}\right]
$$

$\tilde{\phi}_{R}$ and $\tilde{\phi}_{L}$ should also be expanded intern of new mode $\tilde{b}_{q} \tilde{b}_{q}^{\dagger}$

$$
\begin{aligned}
& \tilde{\phi}_{R}=\tilde{\varphi}_{R}(x)+\tilde{\varphi}_{R}^{+}(x)+\frac{\sqrt{\pi} x}{L} \tilde{\hat{N}}_{R} \\
& \tilde{\phi}_{L}=\tilde{\varphi}_{L}(x)+\tilde{\varphi}_{L}^{\dagger}(x)+\frac{\sqrt{\pi} \chi}{L} \widetilde{\hat{N}}_{L}
\end{aligned}
$$

with $\tilde{\varphi}_{R}=\sqrt{\frac{1}{4 \pi}} \sum_{q>0} \frac{1}{\sqrt{n_{q}}} \tilde{b}_{q} e^{i q x-a q / 2}, \tilde{\varphi}_{R}^{+}=\sqrt{\frac{1}{4 \pi}} \sum_{q>0} \frac{1}{\sqrt{n_{q}}} \tilde{b}_{q}^{+} e^{-i q x-a q / 2}$

$$
\tilde{\varphi}_{L}^{\dagger}=\sqrt{\frac{1}{4 \pi}} \sum_{q \geqslant 0} \frac{1}{\sqrt{n_{q}}} \tilde{b}_{-q}^{\dagger} e^{i i q x-a q / 2}, \tilde{\varphi}_{L}=\sqrt{\frac{1}{4 \pi}} \sum_{q>0} \frac{1}{\sqrt{n_{q}}} \tilde{b}_{-q} e^{-i q x-a q / 2}
$$

where $\left[\begin{array}{c}\tilde{b}_{q} \\ \tilde{b}_{-q}^{+}\end{array}\right]=\left[\begin{array}{cc}\frac{1+k}{2 \sqrt{k}} & \frac{1-k}{2 \sqrt{k}} \\ \frac{1-k}{2 \sqrt{k}} & \frac{1+k}{2 \sqrt{k}}\end{array}\right]\left[\begin{array}{c}b_{q} \\ b_{-q}^{+}\end{array}\right]$

$$
\rightarrow\left[\begin{array}{rr}
\operatorname{ch} \theta & -\operatorname{sh} \theta \\
-\operatorname{sh} \theta & \operatorname{ch} \theta
\end{array}\right] \quad \text { where }\binom{\operatorname{ch} \theta=\frac{1+k}{2 \sqrt{k}}}{\operatorname{sh} \theta=\frac{k-1}{2 \sqrt{k}}} \text {. }
$$

Corelation function:
The ground state is the vacuum of \tilde{b}_{q} operators.

$$
\begin{aligned}
& {\left[\tilde{\varphi}_{R}(x), \tilde{\varphi}_{R}^{\dagger}\left(x^{\prime}\right)\right]=\frac{-1}{4 \pi} \ln \left[\frac{2 \pi}{L}\left(a-i\left(x-x^{\prime}\right)\right)\right]} \\
& {\left[\tilde{\varphi}_{L}(x), \tilde{\varphi}_{L}^{\dagger}\left(x^{\prime}\right)\right]=\frac{-1}{4 \pi} \ln \left[\frac{2 \pi}{L}\left(a+i\left(x-x^{\prime}\right)\right)\right]}
\end{aligned}
$$

which are the same as $\varphi_{R} \varphi_{R}^{+}, \varphi_{L}, \varphi_{L}^{+}$ before.

$$
\langle G| \tilde{\varphi}_{R}(x t) \tilde{\varphi}_{R}(0)|G\rangle=\langle G| \tilde{\varphi}_{R}(x, t) \tilde{\varphi}_{R}^{\dagger}(0)|G\rangle
$$

$$
=\langle G|\left[\tilde{\varphi}_{R}(x, t), \tilde{\varphi}_{R}^{\dagger}(0)\right]|G\rangle=\frac{-1}{4 \pi} \ln \left[\frac{2 \pi}{L}(a-i(x-v t))\right]
$$

$$
\langle G| \tilde{\phi}_{L}(x t) \tilde{\phi}_{L}(0)|G\rangle=\langle G|\left[\tilde{\varphi}_{L}(x t), \tilde{\varphi}_{L}^{\dagger}(0)\right]|G\rangle=\frac{-1}{4 \pi} \ln \left[\frac{2 \pi}{L}(a+i(x+v t))\right]
$$

$$
\langle G| \cdot e^{i \beta \tilde{\phi}_{R}(x t)} \cdot e^{-i \beta^{\prime} \tilde{\phi}_{R}(0)}|G\rangle
$$

use the identity $e^{A} e^{B}=: e^{A+B}: e^{\langle G| A B+\frac{A^{2}}{2}+\frac{B^{2}}{2}|G\rangle}$

$$
\begin{aligned}
e^{\beta^{2}\langle G| \tilde{\phi}_{R}(x t) \tilde{\phi}_{R}(0)-\tilde{\phi}_{R}^{2}(0)|G\rangle} & =e^{\beta^{2}\left(\frac{-1}{4 \pi}\right) \ln \frac{a-i(x-v t)}{a}} \\
& =\left[\frac{a}{a-i(x-v t)}\right] \frac{\beta^{2}}{4 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& e^{i \beta \tilde{\phi}_{R}(x t)} e^{-i \beta^{\prime} \tilde{\phi}_{R}(0)}=: e^{i \beta \tilde{\phi}_{R}(x t)-i \beta^{\prime} \tilde{\phi}_{R}(0)}: e^{\langle G| \beta \beta\left(\tilde{\phi_{R}}(x t) \tilde{\phi_{R}}(0)-\tilde{\phi}_{R}^{\prime}(0)\right)|G\rangle} \\
& \cdot e^{-\frac{\left(\beta-\beta^{\prime}\right)^{2}}{2}\left\langle\left.\langle |\right|_{R} ^{2}(\theta) \mid G\right\rangle} \\
& \langle G| \tilde{\phi}_{R}^{2}(0)|G\rangle=\frac{-1}{4 \pi} \ln \frac{2 \pi a}{L} \Rightarrow e^{-\frac{\left(\beta-\beta^{\prime}\right)^{2}}{2}\langle G| \tilde{\phi}_{R}^{2}(0)|G\rangle}=e^{-\frac{\left.(\beta-\beta)^{\prime}\right)^{2}}{8 \pi} \ln \frac{L}{2 \pi a}} \\
& \text { thus we set } \beta=\beta^{\prime}
\end{aligned}
$$

Similarly

$$
\begin{align*}
& \langle G| e^{i \beta \tilde{\phi_{L}}(x t)} e^{-i \beta^{\tilde{\phi}}(0)}|G\rangle=\delta_{\beta \beta^{\prime}}\langle G|: e^{i \beta \tilde{\phi}_{L}-\tilde{\phi}_{L} \tilde{\phi_{L}}(0)}: e^{\beta^{2}\langle G| \tilde{\phi}_{L}(x t) \tilde{\phi_{L}}(0)-\tilde{\phi}^{\prime}(0)|G\rangle}|G\rangle \\
& =\delta_{\beta \beta^{\prime}} e^{\beta^{2}\langle G| \tilde{\phi}_{L}(x t) \tilde{\phi}_{L}(0)-\tilde{\phi}_{L}^{2}(0)|G\rangle}=\delta_{\beta \beta^{\prime}} e^{\left.\beta^{2}\left(\frac{-1}{4 \pi}\right) \ln \frac{a+i(x+1}{a} \cdot v t\right)} \\
& \langle G| e^{i \beta \tilde{\phi}_{L}(x t)} e^{-i \beta \tilde{\phi}_{L}(0)}|G\rangle=\delta_{\beta \beta^{\prime}}\left[\frac{a}{a+i\left(x+v_{t}\right)}\right]^{\frac{\beta^{2}}{4 \pi}}
\end{align*}
$$

Correlation function (II)

$$
\begin{align*}
& \langle G| e^{i \beta \phi_{p}(x t)} e^{-i \beta \phi(0)}|G\rangle=\langle G| e^{i \beta \sqrt{k} \tilde{\phi}(x t)} e^{-i \beta \sqrt{k} \tilde{\phi}(0)}|G\rangle \\
& e^{i \beta \sqrt{k} \tilde{\phi}(x t)} e^{-i \beta \sqrt{k} \tilde{\phi}(0)}=: e^{-i \beta \sqrt{k}(\tilde{\phi}(x t)-\tilde{\phi}(0))}: e^{\left.\langle G| \beta^{2} k^{2}(\tilde{\phi}(x t) \tilde{\phi}\}_{0}\right)-\tilde{\phi}^{2}(u)} \\
& \langle G| \tilde{\phi}(x t) \tilde{\phi}(0)-\tilde{\phi}^{2}(0)|G\rangle=\langle G|\left(\tilde{\phi}_{R}(x t)+\tilde{\phi}_{L}(x t)\right)\left(\tilde{\phi}_{R}(0)+\phi_{L}(0)\right)-\left(\tilde{\phi_{R}(0)}+\tilde{\phi_{L}}(0)\right)^{2} \\
& =\langle G| \tilde{\phi}_{R}(x t) \tilde{\phi}_{R}(0)-\hat{\phi}_{R}^{2}(0)|G\rangle\langle G| \tilde{\phi}_{L}(x t) \tilde{\phi}_{L}(0)-\tilde{\phi}_{L}^{2}(0)|G\rangle \\
& \Rightarrow\langle G| e^{i \beta \phi(x t)} e^{-i \beta \phi(0)}|G\rangle=\left[\frac{a}{a-i(x-v t)}\right]^{\frac{\beta^{2} k}{4 \pi}}\left[\frac{a}{a+i(x+v t)}\right]^{\frac{\beta^{2} k}{4 \pi}}
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{l}
\langle G| e^{i \beta \phi(x t)} e^{-i \beta \phi(0)}|G\rangle=\left[\frac{a^{2}}{(a+i v t)^{2}+x^{2}}\right] \\
\Rightarrow \text { Scaling dimension of } 0=e^{i \beta \phi}, \quad \Delta=\frac{\beta^{2} k}{4 \pi}
\end{array} \\
& \text { For example, for } \operatorname{coW} / B W \text { order } N^{+}=\frac{i}{2 \pi a} e^{i \sqrt{4 \pi} \phi} \Rightarrow: \Delta_{N}=K \text {. } \\
& \langle G| e^{i \beta \theta(x t)} e^{-i \beta \theta(0)}|G\rangle=\langle G| e^{i \frac{\beta \tilde{\theta}(x t)}{\sqrt{k}}} e^{-i \frac{\beta \tilde{\theta}(0)}{\sqrt{k}}}|G\rangle \\
& e^{i \frac{\beta}{\sqrt{k}} \tilde{\theta}(x t)} e^{-i \frac{\beta}{\sqrt{k}} \tilde{\theta}(0)}=: e^{-i \frac{\beta}{\sqrt{k}} \hat{\theta}(x t)-\tilde{\theta}(0)}: e^{\left.\langle G| \frac{\beta^{2}}{k^{2}} \tilde{\theta}(x t) \tilde{\theta}(0)-\tilde{\theta}^{2}(\theta)\right]|G\rangle} \\
& \langle G| \tilde{\theta}(x t) \tilde{\theta}(0)-\tilde{\theta}^{2}(0)|G\rangle=\langle G| \tilde{\phi}_{R}^{(x t)} \phi_{R}(0)-\tilde{\phi}_{R}^{2}(0)|G\rangle\langle G| \tilde{\phi_{L}}(x t) \phi_{L}(0)-\tilde{\phi}_{L}^{2}(0)|G\rangle \\
& \tilde{\theta}=\tilde{\phi}_{R}-\tilde{\phi}_{L}{ }^{\top} \\
& \Rightarrow\langle G| e^{i \beta \theta(x t)} e^{-i \beta \theta(0)}|G\rangle=\left[\frac{a^{2}}{(a+i v t)^{2}+\chi^{2}}\right] \cdot \frac{\beta^{2}}{4 \pi k}
\end{aligned}
$$

Scaling dimension of $0=e^{i \beta \theta} \Rightarrow \Delta=\frac{\beta^{2}}{4 \pi} K^{-1}$
for pairing $\Delta_{\text {pair }}=\frac{i}{2 \pi a} e^{-i \sqrt{4 \pi} \theta} \Rightarrow \Delta_{\Delta_{\text {pair }}}=K^{-1}$
Thus in the Luttinge liquid phase, there are two competing ordering cow with scaling dimension k If $k>1$, paining wins pairing $K^{-1} \cdot \underset{\text { repulsive }^{K<1} \text { cow wins }}{\substack{\text { rep }}}$ Prepulsive

Cuprelation function (III)- femien

$$
\begin{aligned}
& \psi_{R}=\frac{1}{\sqrt{2 \pi a}} e^{i \sqrt{4 \pi} \phi_{R}} \\
& \langle G| \psi_{R}(x t) \psi_{R}^{\dagger}(u)|G\rangle=\frac{1}{2 \pi a}\langle G| \underbrace{e^{i \sqrt{4 \pi} \phi_{R}(x t)} e^{-i \sqrt{4 \pi} \phi_{R}(0)}}|G\rangle \\
& =e^{i \sqrt{4 \pi}\left(\phi_{R}-\phi_{R}(u)\right)}: e^{\left(4 \pi\langle G| \phi_{R}(x t) \phi_{R}(0)\right.}-\phi_{R}^{2}(\omega)|G\rangle \\
& \langle G| \phi_{R}(x t) \phi_{R}(0)-\phi_{R}^{2}(0)|G\rangle=\langle G|\left(\frac{1+k}{2 \sqrt{k}} \tilde{\phi}_{R}+\frac{1-k}{2 \sqrt{k}} \tilde{\phi}_{L}\right)\left(\frac { 1 + k } { 2 \sqrt { k } } \tilde { \phi } _ { R } \left(0+\frac{1-k}{2 \sqrt{k}} \tilde{\phi}_{L}(0)-\cdots|G\rangle\right.\right. \\
& =\frac{(1+K)^{2}}{4 K}\langle G| \tilde{\phi}_{R}(x t) \tilde{\phi}_{R}(0)-\tilde{\phi}_{R}^{2}(0)|G\rangle+\frac{(1-K)^{2}}{4 K}\langle G| \tilde{\phi}_{L}(x t) \tilde{\phi}_{L}(0)-\tilde{\phi}_{L}^{(}(0)|G\rangle \\
& \langle G| \psi_{R}(x t) \psi_{R}^{\dagger}(0)|G\rangle=\exp \left[-\frac{(1+k)^{2}}{4 k} \ln \frac{a-i(x-v t)}{a}-\frac{(1-k)^{2}}{4 k} \ln \frac{a+i(x-v-t)}{a}\right] \\
& =\frac{1}{2 \pi a}\left[\frac{a}{a-i(x-v t)}\right]^{\frac{(1+k)^{2}}{4 k}}\left[\frac{a}{a+i(x+v t)}\right]^{\frac{(1-k)^{2}}{4 k}} \\
& \psi_{L}=\frac{1}{\sqrt{2 \pi a}} e^{-i \sqrt{4 \pi} \phi_{L}} \\
& \left\langle G_{K}\right| \psi_{L}(x t) \psi_{L}^{+}(0)|G\rangle=\frac{1}{2 \pi a}\langle G| e^{-i \sqrt{4 \pi} \phi_{L}(x t)} e^{i \sqrt{4 \pi} \phi_{L}(0)}|G\rangle \\
& \langle G| \phi_{L}(x t) \phi_{L}(0)-\phi_{L}^{2}(0)|G\rangle=\frac{(1-K)^{2}}{4 K}\langle G| \tilde{\phi}_{R}(x t) \phi_{R}(0)-\phi_{R}^{2}(0)|G\rangle \\
& \left.+\frac{(1+k)^{2}}{4 k}<G \right\rvert\,{\underset{L}{L}}(x t) \phi_{L}(0)-\phi_{\dot{L}}^{2}(0)(G) \\
& \Rightarrow\langle G| \psi_{L}(x t) \psi_{L}^{\dagger}(0)|G\rangle=\frac{1}{2 \pi a}\left[\frac{a}{a-i(x-v t)}\right]^{\frac{(1+k)^{2}}{4 k}}\left[\frac{a}{a+i(x+v t)}\right]^{\frac{(1-k)^{2}}{4 k}}
\end{aligned}
$$

fermion scaling dimension larger than $1 / 2$.

$$
\Delta_{\psi}=\frac{1}{2}\left[\frac{(1+k)^{2}}{4 k}+\frac{(1-k)^{2}}{4 k}\right]=\frac{1}{4}(k+/ / k) \geq \frac{1}{2}
$$

current
how about density: correlation?

$$
\begin{aligned}
& \text { how about density } \\
& \langle G| \partial x \phi(x t) \partial x \phi(00)|G\rangle=\partial x_{1} \partial_{x_{2}}\langle G| \phi\left(x_{1} t_{1}\right) \phi\left(x_{2} t_{2}\right)-\phi^{2}(G)|G\rangle \\
& =K \partial_{x_{1}} \partial_{x_{2}}\langle G| \tilde{\phi}\left(x_{1} t_{1}\right) \tilde{\phi}\left(x_{2} t_{2}\right)-\tilde{\phi}^{2}(0)|G\rangle \\
& =k \partial_{x_{1}} \partial x_{2}\left\{\langle G| \tilde{\phi}_{R}\left(x_{1} t_{1}\right) \tilde{\phi}_{R}\left(x_{2} t_{2}\right)-\tilde{\phi}_{R}(0)|G\rangle+R \rightarrow L\right\rangle \\
& =k \partial_{1} \partial x_{2}\left[\left(\frac{-1}{4 \pi}\right) \ln [a+i(x+v t)]+\left(\frac{-1}{4 \pi}\right) \ln (a-i(x-v t)]\right. \\
& =0 \frac{k}{4 \pi}\left[\partial_{x}^{2} \ln a+i(x+v t)+\partial_{x}^{2} \ln (a-i(x-v t)]\right. \\
& =\frac{+k}{4 \pi}\left[\frac{1}{[a+i(x+v t)]^{2}}+\frac{1}{\left[a-i(x-v t)^{2}\right]^{2}}\right]
\end{aligned}
$$

it's negatively correlated!

