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Competing orders in coupled Luttinger liquids
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We consider the problem of two-coupled Luttinger liquids both at half filling and at low doping levels, to
investigate the problem of competing orders in quasi-one-dimensional strongly correlated systems. We use
bosonization and renormalization group equations to investigate the phase diagrams, to determine the allowed
phases, and to establish approximate boundaries among them. Because of the chiral translation and reflection
symmetries in the charge mode away from half filling, orders of charge-density wave~CDW! and spin Peierls
~SP!, diagonal current~DC!, andd-density wave~DDW! form two doublets and thus can be at most quasi-
long-range ordered. At half filling, Umklapp terms break this symmetry down to a discrete group and thus
Ising-type ordered phases appear as a result of spontaneous breaking of the residual symmetries. Quantum
disordered Haldane phases are also found, with finite amplitudes of pairing orders and triplet counterparts of
CDW, SP, DC, and DDW. Relations with recent numerical results and implications to similar problems in two
dimensions are discussed.
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I. INTRODUCTION

The problem of the nature of the phase diagram of
cuprate superconductors remains at the center of resear
the physics of strongly correlated electron systems. A rec
work has focused on the possible competing orders res
sible for the known features of the phase diagram as we
the unusual physical properties of the pseudo-gap regim
number of candidate competing orders have been conside
including antiferromagnetism,d-wave pairing~DSC!, incom-
mensurate charge-ordered states and other liquid crystal
phases, andd-density wave states~DDW! @also known as
staggered flux states~SF! or orbital antiferromagnetism
~OAF!#, among others.

SO(5) theory1 focuses on the competition between an
ferromagnetism andd-wave superconductivity. In this theory
the natural SU(2)3U(1) symmetry of the spin and charg
degrees of freedom is regarded as the result of an exp
symmetry breaking of a larger symmetry, characterized b
global SO(5) group. In this picture, this larger symmetry
not apparent except close to a quantum critical point wh
quantum fluctuations suppress both antiferromagnetism
d-wave superconductivity, thus leading to a pseudogap
gime controlled by this fixed point.

In contrast, in the stripe mechanism,2 the ground state o
the doped Mott insulator is an inhomogeneous charge
dered state resembling a liquid crystal phase,3 which breaks
both rotational invariance and~partially! translation invari-
ance, i.e., it is a quantum smectic. In this picture,
pseudogap is the spin gap which develops in these quasi-
dimensional states, and it is not a signature of some so
long-range order. In this mechanism, macroscopic phase
herence andd-wave superconductivity result from interstrip
Josephson couplings.2,4

In thed-density wave state, and similarly in the physica
equivalent staggered flux and orbital antiferromagne
states, there is a hidden order which has the samedx22y2
0163-1829/2003/68~11!/115104~16!/$20.00 68 1151
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symmetry as ad-wave superconductor. In this phase, t
ground state has an ordered pattern of staggered orbital
rents, and this is the order which competes withd-wave
superconductivity.5–10

However, in spite of a continued effort during the pa
decade or so, and largely due to the lack of systematic n
perturbative methods in two dimensions, it has been q
difficult to establish the phase diagram of reasonable
dimensional strongly correlated systems based on the H
bard model. Much of the work done is based on mean-fie
type approximations which favor one type of order over o
ers or privileges the competition among a particular pair
order parameters. While it is quite possible that these stu
reveal different aspects of possible phase diagrams of s
generic, possibly short-range models, it is not possible
present to determine reliably the phase diagram of many
these models except sometimes at extreme regimes of s
parameter. Thus, different approaches, including largeN
methods~and their relatives!, have been used to constru
spin-liquid states.11–17 Hartree-Fock, large-d, and large-N
methods have been used to study phase separation
striped states.18–21 Similarly, Hartree-Fock methods hav
also been used to study the competition between super
ductivity and DDW order.22 There is also an extensive litera
ture on numerical simulations which work either at moder
to high temperatures~as in Quantum Monte Carlo simula
tions due to the fermion sign problem! or at exact diagonal-
izations of systems which are usually too small to reso
these issues.

It is largely for these reasons, as well as for the need
nonperturbative results, that some of these questions h
been considered in the framework of quasi-one-dimensio
systems such as Hubbard-type models~in a loose sense! on
chains and ladders. Many of these issues, but not all, ca
studied in quasi-one-dimensional systems. However, no
of these questions can be addressed in one dimension a
physics may be quite different. For instance, the tw
©2003 The American Physical Society04-1
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dimensional spin-liquid states in two dimensions have v
specific features with no counterpart in one dimension~not
even in ladders!.23–25 Likewise, the description of a dope
one-dimensional Mott insulator at weak coupling is a L
tinger liquid, while at strong coupling it is an incommens
rate soliton crystal which is also a Luttinger liquid, albe
with strongly renormalized parameters. In contrast, in t
dimensions, at weak coupling one may expect to find Fer
liquid pockets, while at stronger couplings there is a hos
possible liquid crystal like phases going from a solid to
stripe~or smectic! to a nematic, whose behavior is marked
different from their one-dimensional counterparts~when they
exist!. Nevertheless, and in spite of these caveats, studie
quasi-one-dimensional systems have yielded a wealth o
formation on the physics of strongly correlated systems.

The simplest quasi-one-dimensional systems for the st
of some of the competing orders described above~and oth-
ers! are ladder systems. Away from half filling, Hubbard-ty
models on ladder systems can be reduced to the proble
two-coupled Luttinger liquids. There is by now a rather e
tensive literature on the properties of coupled Luttinger l
uids. These systems have been studied both analytically26–36

and numerically37–42partly for their theoretical simplicity as
well as a laboratory to test ideas intended to work possibl
two dimensions, and for their relevance to ladd
compounds.43 As it turns out, systems of two-coupled Lu
tinger liquids can support almost all of the local orders p
posed for two-dimensional systems and thus shed some
on them. It is thus interesting to investigate this setting as
competition between different sorts of possible orde
states, to investigate their phase diagrams systematically
to compare with numerical results.

In this paper, we investigate the phase diagrams of
weakly coupled Luttinger liquids both at low doping leve
and at half filling, using bosonization and renormalizati
group ~RG! methods. A number of authors have conside
before many aspects of this problem~see, in particular, Refs
29–33,35,36!. Although many of the phases that we will di
cuss here have been discussed before, we also find a nu
of different and interesting phases as well as a numbe
new symmetry relations between some of these phases.

One of the motivations of this paper was the recent s
gestion that the Ising-like order parameter of theZ2 symme-
try of the DDW phase could be observed separately from
incommensuration associated with varying the dop
level.7,8,22If this was true, it may be possible to have a sta
phase on a ladder with spontaneously brokenZ2. Unfortu-
nately, and in agreement with recent results by Fjarestad
Marston,36 we find that while the DDW order parameter do
contain an Ising-like piece~as it should!, it always involves
the charge degree of freedom which leads to incommensu
behavior. On a ladder, this leads to correlation funct
which decays like a power of the distance. Although o
results were derived at weak coupling we expect that
behavior should extend to strong coupling, as well~with the
usual large but finite renormalizations of velocities and
ponents.! However, in two dimensions, this implies at lea
two ~and possibly more! possible and distinct phases:
Fermi-liquid-like DDW phase with pockets,7,8 and a smectic
11510
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~or stripe! phase with DDW order. We also find that it i
quite hard to reach this phase in a ladder system, at l
within a naive derivation of the effective bosonized theo
from Hubbard-like microscopic models, which we summ
rize in Appendix A. Recent, unpublished, numerical simu
tions by Troyer, Chakravarty, and Schollwo¨ck42 have reached
similar conclusions although in a regime where the couplin
are larger. These authors find exponentially decaying co
lations and hence only short-range DDW order, which me
that the simulations reflect a quantum disordered phase~of
the type described below!. ~See also the recent work o
Stanescu and Phillips.44!

The intertwinning of charge order with some other sort
order ~with a discrete symmetry group! is obviously not pe-
culiar to DDW order. This is a rather generic situation whi
leads to interesting phases. It also happens for instance,
this is well known, to the Spin-Peierls or dimerized pha
which, upon doping in two dimensions, also becomes eit
a Fermi liquid driven by Fermi-surface pockets at weak co
pling or a liquid crystal phase, such as a stripe state, at
termediate and strong coupling. One such example is a bo
centered stripe state which was considered at some lengt
Vojta, Zhang, and Sachdev,21 or a site-centered stripe of th
type considered by Granath and co-workers4 which has a rich
phase diagram. In a ladder system, these phases are Lutt
liquid which cannot be qualitatively distinguished from the
weak coupling counterparts.

We also find a number of interesting symmetries relat
pairs of these phases. We find that, away from half filling,
charge-density wave phase~CDW! with the spin-Peirels
phase~SP! ~or bond-density wave! and a diagonal curren
phase~DC! ~described below! with the commensurate DDW
phase form two doublets under the continuous symmetry
sliding the charge profile, represented by the uniform ch
shift of the charge Luttinger fieldfc1 : fc1→fc1

1a (mod 4Ap), fc6→2fc6 ~where the real numbera is
an arbitrary phase!, i.e., a chiral translation on a circle and
reflection. This continuous symmetry group is non-Abeli
and it may be denoted byC`v , in Schoenflies’ symbols
Since in one-dimensional quantum systems continuous s
metries cannot be broken spontaneously, they can o
exhibit at most quasi-long-range fluctuating order a
power-law correlations. However, at half-filling, Umklap
terms break the continuous symmetryC`v down to the finite
groupC4v , i.e., fc1→fc11nAp (mod 4Ap) andfc6→
2fc6 . Hence, at half filling, these symmetries can be b
ken spontaneously leading to true long-range ordered Is
type phases. In addition, we also find four quantum dis
dered Haldane-like phases whose low-energy physics ca
described by a suitable O(3) nonlinears model. In these
phases, there is a spin gap which remains present away
half filling. In this regime, these phases are Luther-Em
liquids. There are considerable numerical and analytic e
dences for these spin-gap phases which are in agree
with our conclusions.37–39,43 We also discuss in detail th
nature of the quantum phase transitions found at half filli

This paper is organized as follows. In Sec. II, we pres
the effective Hamiltonians and the order parameters used
low to characterize the different phases in their bosoni
4-2
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form. In Sec. III, we use a renormalization group analy
and the known strong-coupling behaviors of the effect
theory at low doping level to construct a phase diagram
Sec. IV, we do the same type of analysis as in Sec. III bu
half filling. In Sec. V, we present our conclusions. In Appe
dix A, we relate the parameters of the effective bosoniz
theory with those of the extended Hubbard model on
ladder, and in Appendix B we give explicit expressions
the order parameters of interest in terms of the bosonic fie

II. MODEL HAMILTONIANS AND ORDER PARAMETERS

We begin with two-coupled one-dimensional chains. T
large extent, we will follow the approach used by Schulz
Ref. 29. We consider first the noninteracting limit, and dia
onalize the kinetic part in terms of ‘‘bonding’’ and ‘‘anti
bonding’’ bands~denoted by 1 and 2, respectively!, i.e.,
symmetric and antisymmetric under the exchange of
chain labels. Including nearest-neighbor hopping, the no
teracting dispersion relations are juste is(k)522tcosk
7t'(i51,2), wheret' is the interchain hopping integral. Thi
approach makes sense ift' is large compared to any of th
dynamically generated gaps of the system, i.e., in the we
interacting limit.

To first order in the doping leveld, the Fermi wave vec-
tors of two bands are, respectively,kf 1,2a5p(12d)/2
6sin21(t' /2t), and the corresponding bare Fermi velociti
arev f 1,2/a5A4t22t'

2 6t'dp/2, wherea is the lattice con-
stant which will serve as the short distance cutoff in t
bosonized theory. We will consider the regimes of both l
doping and half filling~discussed in Secs. III and Sec. I
respectively! and assume thatt' is not necessarily small. A
half filling where the Umklapp processes dominate, the s
tem has the particle-hole symmetry

v f 15v f 2 and kf 11kf 25p. ~2.1!

Away from half filling, we will assume that the doping leve
d is large enough to suppress the effects of all Umkla
processes~See Sec. III!. However, ifd is relatively small, the
relation Eq.~2.1! still holds approximately. In this regime th
difference in their Fermi velocities does not play a very i
portant role~see, however, the discussion in Ref. 45!. How-
ever, as the filling factor of one of the bands approaches z
the respective Fermi velocity becomes very small and
physics is somewhat changed. In this limit, there is an
hancement of the processes leading to the formation of a
gap.2,32 Since we will also find spin-gap phases, we w
ignore here this special regime since it leads to the sa
physics~albeit with very different parameters!.

The effective theory then consists of two-coupled L
tinger liquids, for the bonding and antibonding bands, an
set of perturbations, which we describe below, each ass
ated with a particular coupling constant. In Appendix A, w
will relate these coupling constants with the interaction
rameters of an extended Hubbard model on a ladder w
hopping amplitudest and t' , on-site Hubbard repulsionU,
and Coulomb interactionsVi ~on the chains!, V' ~on the
rungs!, and Vd ~along the diagonals of the elementa
11510
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plaquette!, as well as the exchange Heisenberg interacti
Ji ~on the chains! andJ' ~on the rungs!.

We bosonize the effective theory by introducing a cha
bose field and a spin bose field for both the bonding a
antibonding Fermi fields,fn,i , where i 51,2 andn5c,s,
where c and s label charge and spin modes, respective
These fields are mixed under the effects of various inter
tions, in particular, the backscattering coupling of the resp
tive charge and spin currents and densities. The boson
theory is diagonalized in terms of the even and odd com
nations of bose fields from each band:fn65(fn,1

6fn,2)/A2, un65(un,16un,2)/A2, n5c,s.
The quadratic parts of the Hamiltonian density have

standard ‘‘universal’’ form:

Hc,65
vc,6

2 FKc,6Pc,6
2 1

1

Kc,6
~]xfc,6!2G ,

Hs65
vs,6

2 FKs,6Ps,6
2 1

1

Ks,6
~]xfs,6!2G , ~2.2!

wherePn,6 are the momenta canonically conjugate to t
bose fieldsfn,6 . The effective Luttinger parameters and v
locities vc,6 andvs,6 are given by

Kc65A2pv f7gc6

2pv f6gc6
, Ks65A2pv f6gs6

2pv f7gs6
,

vc,65Av f
22S gc6

2p D 2

, vs,65Av f
22S gs6

2p D 2

,

~2.3!

wherev f5(v f 11v f 2)/2. The coupling constantsgc6 , gs6

correspond to forward-scattering nonchiral couplings of
charge and spin currents, and are already taken into acc
in the quadratic terms. Here we have ignored the effects
straightforward effects of forward-scattering chiral co
plings, since they only renormalize Fermi velocities a
modify the naively determined values of the Luttinger p
rameters. Also note that these expressions can be taken
ously only at weak coupling. At intermediate and strong co
plings, there is also a finite but significant renormalization
both the Luttinger parameters and the velocities.

Let us now discuss the nonquadratic, interaction ter
Throughout we will use Majorana Klein factors obeying t
conventionh↑(1)h↓(1)h↓(2)h↑(2)51. The backscattering
and pair tunneling terms yield the bosonized expressions

Hint5
cosA4pfs1

2~pa!2
~g1cosA4pfs22g2cosA4pus2!

1
cosA4puc2

2~pa!2
~g3cosA4pus21g4cosA4pfs2

1g5cosA4pfs1!, ~2.4!

whereuc,6 andus,6 are the dual fields of the charge boso
fc,6 and spin bosonsfs,6 , respectively. Terms labeled b
4-3



on

se

y
en

s

ir

s

iv
o

m
,
e

a

he
th

. 1
th
ar
-
e

u
e

a
he
rd

ls

en-
tane-
ned
ped

ac-
er-
n
un-
their
n-

two

e
o-

been
ent
SC

ses

-
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the effective coupling constantsg1 andg2 originate from the
intraband and inter-band backscattering interacti
2g1(J1R

x,yJ1L
x,y11→2) and 2g2(J1R

x,yJ2L
x,y11↔2), respec-

tively. The terms labeled by the couplingsg3 , g4, and g5
represent singlet and triplet pair-tunneling proces
ls(D1

†D21H.c.) and l t(DW 1
†DW 21H.c.) with g352l t , g4

5ls1l t , and g55ls2l t . Three conditions, required b
the SU(2) spin rotation invariance, relate the spin curr
and triplet tunneling couplings:gs65(g16g2)/2 @see also
Eq. ~2.3!# andg55g42g3.

Near half filling, the following additional Umklapp term
appear as

Hum5
cos~A4pfc122dpx!

2~pa!2
~guccosA4puc2

2gu3cosA4pus22gu4cosA4pfs2

2gu5cosA4pfs1!. ~2.5!

The term with coupling constantguc is the so-called ‘‘h
pair’’ tunneling processes, i.e., tunneling of Cooper pa
with momentum 2kf , which has the formmR1

† mL21(1
→2)1H.c., wheremR,L5cR,L↑cR,L↓ . The terms with cou-
pling constantsgu3 , gu4, and gu5 represent the coupling
between the respective CDW and spin density wave~SDW!
couplings on each chain: lcdw(N†(1)N†(2)1H.c.),
lsdw(NW †(1)NW †(2)1H.c.), whereN( i ) is the 2kF CDW or-
der parameter of chaini 51,2, andNW ( i ) is the 2kF ~Néel!
SDW order parameter of chaini 51,2. The coupling con-
stants, which aregu352lsdw, gu4,55(2lcdw7lsdw/2).
Due to the SU(2) spin symmetry, conditiongu55gu42gu3
also holds.

For the two-leg ladder, we only consider where repuls
interactions dominate, which implies that the bare values
the effective Luttinger parameters are in the regi
Kc1(0)!1, Kc2(0),Ks2(0);1. Compared with Ref. 29
Kc2(0),Ks2(0) are not necessarily 1, for here they are d
termined by off-site interactions~see Appendix A!.

Bosonic expressions for various order parameters
given in Appendix B. In the particle-hole (p-h) channel, the
possible singlet fermionic bilinear forms, which break t
translational symmetry, are the order parameters for
CDW and SP, DC, and DDW operators as shown in Fig
The CDW and SP order parameters are proportional to
real and imaginary parts of the symmetric biline
c1Ls

† c2Rs1c2Ls
† c1Rs , whereas the DC and DDW order pa

rameters are the real and imaginary parts of the antisymm
ric version of this bilinear.

From their bosonic representations, we find that all fo
order parameters transform nontrivially under the symm
tries broken in their associated phases~or ground states!.
Thus, for instance, the SP and DDW order parameters
odd under theZ2 symmetries broken spontaneously by t
SP and DDW phases. However, in all four cases, these o
parameters also involve a phase factor~or vertex operator! of
the charge bosonfc,1 . Hence, these order parameters a
transform nontrivially under shifts of the charge bosonfc,1 ,
11510
s

s

t

s

e
f

e

-

re

e
.
e

t-

r
-

re

er

o

i.e., uniform displacements of the charge profile. This dep
dence means that the discrete symmetries, broken spon
ously in these phases with long-range order, are intertwin
with the continuous symmetry of the incommensurate do
state. Consequently, these order parameters do not truly
quire an expectation value but instead only display pow
law correlations. Also, while it is possible to write dow
bosonic expressions for operators which transform only
der the discrete symmetries broken by these phases,
fermionic versions are strongly nonlocal. Hence, we co
clude that these orders are always incommensurate.

We also find that these order parameters also form
doublets of theC`v group. Similarly, their triplet counter-
parts SDW, SPt, DCt, and DDWt are proportional to real and
imaginary parts ofc1La

† (sW /2)abc2Rb6c2La
† (sW /2)abc1Rb ,

respectively~where the labelt means triplet!. In the particle-
particle (p-p) channel, thes-and d-wave pairing order pa-
rameters areDs,d5(s(2)s(c1Lsc1Rs̄6c2Lsc2Rs̄). In the
following section, we identify the stable fixed points of th
renormalization group~RG! flows for the these phases ass
ciated with these order parameters.

Some of the order parameters discussed above have
investigated before in Ref. 29,30, although under differ
names. For example, our CDW, DDW, SDW, SSC, and D
order parameters are called CDWp, OAF, SDWp, SCs, and
SCd there. We note that in a recent paper Ref. 46, the pha
that we label as DDW, SP, and DC are called SF,P-density
wave and,F-density wave, respectively.

Finally, in Eq.~2.1!, we ignored the effects of the follow
ing terms:

DHc5S Dv f1
Dgc

p D ]xfc1]xfc21S Dv f2
Dgc

p DPc1Pc2 ,

~2.6!

DHs5S Dv f2
Dgs

p D ]xfs1]xfs21S Dv f1
Dgs

p DPs1Ps2 ,

2
Dgs

2~pa!2sinA4pfs2sinA4pfs1 , ~2.7!

FIG. 1. Four Ising type phases. A. charge-density wave~CDW!,
B. spin-Peierls~SP!; C. diagonal current~DC!, D. d-density wave
~DDW!. Their triplet analogs are denoted as SDW, SPt; DCt, DDWt

respectively.
4-4
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TABLE I. Stable fixed points and corresponding quasi-long-range orders away from half filling,
^uc2&50 andg55g42g3 @required by SU(2) invariance#.

g1 ,g2 g3 ,g4 ,g5 fs1 fs2 us2 Order Dimension

1 0,2` 1`,0,2` 0 / Ap/2 CDW1SP Kc1/4
2 0,2` 2`,0,1` Ap/2 / 0 DC1DDW Kc1/4
3 2`,0 0,1`,1` Ap/2 Ap/2 / DSC 1/(4Kc1)
4 2`,0 0,2`,2` 0 0 / SSC 1/(4Kc1)
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DHum5
sin~A4pfc122dpx!

2~pa!2
~DguccosA4puc2

2Dgu3cosA4pus22Dgu4cosA4pfs2

2Dgu5cosA4pfs1!, ~2.8!

whereDv f5dpt'/2 and all other residue coupling constan
varnish linearly with doping near half filling as given in Ap
pendix A. The quadratic residual terms in Eqs.~2.6! and~2.7!
are marginal perturbations, and they slightly change the s
ing dimensions of various operators in Eqs.~2.4! and ~2.5!.
Because they are small, we do not expect that they
change the stable RG fixed points associated with var
phases qualitatively. For the term ofDgs in Eq. ~2.7!, us1 is
fixed around 0 orAp/2 at all the stable fixed points~see
Tables I and III below!. The residual Umklapp terms in Eq
~2.8! are irrelevant away from half filling. At half filling,uc1

is fixed atAp/2 ~see Table III!. Thus, we conclude that a
the nonquadratic operators are irrelevant at all the sta
fixed points. Balents and Fisher32 used a perturbative RG o
the fermionic theory and found that a spin-gap phase de
ops near half filling, which is consistent with the argume
given above. On the other hand, the continuousCv` symme-
try is preserved away from half filling where the Umklap
terms are irrelevant. Thus the conclusion that the CDW
SP, DDW, and DC order parameters are incommensurate
thus exhibit that quasi-long-range order is not affected
these terms. However, these residual terms do affect
boundaries among phases.

III. PHASE DIAGRAM IN THE INCOMMENSURATE
REGIME

We will now investigate the phase diagram in the inco
mensurate regime, but only at low doping. In this regime,
Umklapp processes are cut off at a high-energy scale
2pv fd/a, and can only yield renormalization of the param

TABLE II. Critical phase boundaries and unstable fixed poi
away from half filling, also witĥ uc2&50 andg55g42g3.

gs1 ,gs2 g3 ,g4 ,g5 fs1 Transition

1 0,0 1`,1`,0 unfixed CDW1SP↔DSC
2 0,0 2`,2`,0 unfixed DDW1DC↔SSC
3 2`,0 2`,1`,1` Ap/2 DDW1DC↔DSC
4 2`,0 1`,2`,2` 0 CDW1SP↔DSC
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eters such as the velocities, coupling constants, and Luttin
parameters of the low-energy effective theory. The contri
tions from the Umklapp terms in the RG equations aw
from half filling47 are given in terms of Bessel function
which oscillate when an energy scale lower than that of
Umklapp process is reached. At this scale, the effects
these terms can be neglected. Below, we begin directly at
low-energy scale with all the coupling constants and L
tinger parameters already renormalized by the Umkla
terms.

We will investigate the role of the remaining interactio
by means of a one-loop renormalization group~RG! analysis
combined with semiclassical arguments. In this regime,
charge bosonfc,1 essentially decouples and remains ga
less. Thus, to one-loop order, the Luttinger parameterKc,1
does not flow.~This argument is not completely correc
there are always irrelevant couplings which do lead to fin
renormalizations ofKc,1 ; these effects do not show up a
one-loop order.!

TABLE III. Fixed points at half filling: Stable fixed points and
corresponding gapped phases. We have set^fc1&5Ap/2. The
SU(2) condition requiresg5* 5g4* 2g3* . Phases 1,2,5,6 have tru
Ising-type long-range order, while 3,4,7,8 are quantum disorde
Haldane-like phases.

guc g1 ,g2 g3* ,g4* ,g5* uc2 fs1 (fs2 ,us2) phase

1 1` 0,2` 1`,0,2` 0 0 S/,Ap

2 D SP

2 1` 0,2` 2`,0,1` 0
Ap

2
~/,0! DDW

3 1` 2`,0 0,1`,1` 0
Ap

2
S Ap

2
,/D DSC1SDW

4 1` 2`,0 0,2`,2` 0 0 ~0,/! SSC1DCt

5 2` 0,2` 2`,0,1`
Ap

2

Ap

2
~/,0! CDW

6 2` 0,2` 1`,0,2`
Ap

2
0 S /,

Ap

2 D DC

7 2` 2`,0 0,2`,2`
Ap

2
0 ~0,/! DSC1SPt

8 2` 2`,0 0,1`,1`
Ap

2

Ap

2
S Ap

2
,/D SSC1DDWt
4-5
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The one-loop RG equations for the coupling constantsg1
throughg5 and Luttinger parametersKc,2 andKs,6 are

dKc2

dl
5

1

8p2
~g3

21g4
21g5

2!,

dKs1

dl
52

Ks1
2

8p2
~g1

21g2
21g5

2!,

dKs2

dl
52

Ks2
2

8p2
~g1

21g4
2!1

1

8p2
~g2

21g3
2!,

dg1

dl
5~22Ks12Ks2!g12

g4g5

2p
,

dg2

dl
5S 22Ks12

1

Ks2
Dg21

g3g5

2p
,

dg3

dl
5S 22

1

Kc2
2

1

Ks2
Dg31

g2g5

2p
,

dg4

dl
5S 22

1

Kc2
2Ks2Dg42

g1g5

2p
,

dg5

dl
5S 22

1

Kc2
2Ks1Dg52

g1g4

2p
1

g2g3

2p
, ~3.1!

wherel 5 ln(L/a) with the length scaleL.
Along the SU(2)-invariant manifold for the spin curren

and pair tunneling terms, the RG equations can be simpli
to

dKc2

dl
5

1

8p2
@g3

21g4
21~g32g4!2#,

dgs1

dl
52

1

2p
~gs1

2 1gs2
2 !2

~g32g4!2

4p
,

dgs2

dl
52

1

p
gs1gs21

g3
2

4p
2

g4
2

4p
,

dg3

dl
5S 12

1

Kc2
1

2gs112gs2

2p Dg31
~gs12gs2!g4

2p
,

dg4

dl
5S 12

1

Kc2
1

2gs122gs2

2p Dg41
~gs11gs2!g3

2p
,

~3.2!

with

d

dl
~g32g41g5!5S 12

1

Kc2
1

gs1

2p D ~g32g41g5![0.

~3.3!
11510
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These equations are invariant under transformati
(g1 ,g2 ,g3 ,g4)→(g1 ,g2 ,2g3 ,2g4)→(g2 ,g1 ,g4 ,g3). This
means that phase boundaries must also have such sym
tries.

For ‘‘bare values’’ of the Luttinger parameterKc2(0)
;1, the marginally relevant RG flow of Eq.~3.2! is such
that a gap develops in thec2 sector, which scales like
mc2'exp@21/g(0)#, where g is the most relevant one
among the marginally relevant perturbationsg3 , g4, andg5.
In this regime,Kc,2 flows to large values and, thus from no
on we will set 1/Kc250. In this phase the operato
cos(A4puc,2) acquires a nonvanishing expectation valu
which classically is just61. Hence, in this phase the du
field takes the valuesuc,250,Ap/2, which are related to
each other by aZ2 symmetry.36 In what follows in this sec-
tion, we will choose the valuêuc2&50.

From now on, we will use the set (g1 ,g2 ,g3 ,g4) to rep-
resent the stable fixed points of Eq.~3.2!, which are summa-
rized in Table I. At the fixed points (0,2`,7`,0), the in-
terband backscattering coupling constantg2 is relevant,
while the intraband backscattering coupling constantg1 is
irrelevant. Bothls andl t are relevant and satisfy the relatio
ls52l t . By direct inspection of their scaling dimension
we find thatls andl t are more relevant thang2. The result-
ing phase depends on where the RG flows go. Wheng3→
2`, the expectation values offs,1 andus,2 asymptotically
take the valueŝ fs1&5Ap/2 and ^us2&50, respectively.
This is the stable fixed point for either the DDW phase or
DC phase. However, this is true only for quasi-long-ran
order ~QLRO! due to the strong fluctuations of the gaple
charge bosonfc,1 . In this phase, these order paramete
have scaling dimensionKc,1/4. Conversely, wheng3→
1`, ^fs1&50, and ^us2&5Ap/2. Hence, at this fixed
point, we would have~naively! either a CDW phase or a
spin-Peierls~or dimerized! phase. Here too this is issue on
for QLRO, and the associated order parameters also h
scaling dimensionKc,1/4.

We conclude, in agreement with the recent results of R
36, that because of the chiral translation symmetry in
field fc,1 , in other terms due to the charge incommensu
bility, there is no true long-range order of the DDW order b
only ~incommensurate! power-law correlations. We can fur
ther see that the DDW and DC phases~ and also the CDW
and SP phases! form doublet representation under theC`v
group and are thus degenerate. Equivalently, the DDW
DC order parameters can be regarded as the real and im
nary parts of a single complex order parameter which
thus be rotated continuously into each other. The same r
tionship holds for the CDW and spin-Peierls order para
eters. Thus, both stable phases CDW1SP and DDW1DC
have a continuous U(1) symmetry. Naturally, since the l
der is a one-dimensional system, this symmetry is not tr
spontaneously broken as there are only power-law corr
tions for these order parameters. However, we will see
Sec. IV that at half filling, the Umklapp terms break th
symmetry explicitly from U(1) down toZ2 leading to addi-
tional Ising-like phase transitions.
4-6
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Similarly, we also find thatls is more relevant thang1 at
(2`,0,0,6`), while g2 and l t are irrelevant. Wheng4→
1`, ^fs1& and^fs2& are fixed atAp/2. DSC is the leading
QLRO and its order parameter has scaling dimens
1/(4Kc1). Conversely, wheng4→2`, ^fs1& and ^fs2&
are fixed at 0,s-wave superconductivity~SSC! is the leading
QLRO and its order parameter also has scaling dimen
1/(4Kc1).

Let us consider now the phase boundaries and the na
of the phase transitions between these possible state
gs2(0)50. In this regime, it is more natural to represe
instead the unstable fixed points with (gs1 ,gs2 ,g3 ,g4). The
RG flows starting withgs1(0).0, gs2(0)50, andg3(0)
5g4(0)5g.0 evolve towards the fixed point at (0,0,1`,
1`). Here, the fieldfs1 becomes free,Ks6→1, and the
residual interactions reduce to

H res
1 5

g*

2~pa!2
^cosA4puc2&~cosA4pus21cosA4pfs2!,

~3.4!

whereg* means the renormalized value ofg. At this fixed
point, Ks2→1 and both perturbations are operators of sc
ing dimension 1. This system is invariant under the dua
transformationfs2↔us2 . This model has been studied e
tensively in the literature.29,48 It is equivalent to a theory o
two Ising models. If the coupling constant in front of bo
operators is the same, as it is the case in Eq.~3.4!, one of the
Ising models is at its critical point. Equivalently, it can b
regarded as a theory of two Majorana fermions, one of wh
is massive. Hence, this fixed point is in the universality cl
of the two-dimensional classical Ising model. The Ising ord
and disorder operators are given by sinApfs2 and
sinApus2 , respectively. At this fixed point, both operato
have scaling dimension 1/8, as they should have at an I
transition. A small perturbation makingg3*g4 or g3&g4
causes a flow towards the CDW1SP or DSC fixed points
respectively. Thus,g35g4.0 is the phase boundary be
tween the phase CDW1SP and ad-wave superconductor a
gs2(0)50 andgs1(0).0.

However, if the RG flows begin withgs1(0),0 along
this direction, then the fieldfs2 is no longer critical. Ac-
cording to Eq.~3.2, in this regime,gs1 is marginally relevant
and gs1→2`, with g35g4.0 and g15g2,0. At this
fixed point, the fieldsuc2 and fs1 acquire nonvanishing
expectation values, and the residual interactions at this fi
point reduce to

H res
2 5

cosA4pfs2

2~pa!2
~g4* ^cosA4puc2&1g1* ^cosA4pfs1&!

1
cosA4pus2

2~pa!2
~g3* ^cosA4puc2&

2g2* ^cosA4pfs1&!. ~3.5!

At this stage of RG, the renormalized couplings satisfyg4*
5g3* andg1* 5g2* . Once again we can take
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^cos(A4puc2)&51 ~the renormalization of its amplitude ca
be absorbed in a redefined coupling constant!. This effective
theory has the same form as Eq.~3.4!. Hence, this is also a
theory of two Ising models. However, unlike Eq.~3.4! the
amplitudes of the two dimension one operators are not eq
Hence, generically, both Ising models are off-critical~or
equivalently both species of Majorana fermions are m
sive!. This corresponds to a finite correlation length and
finite energy gap at the phase boundary. Hence, in gen
this is a first-order transition. If̂fs1&50, then the term of
us2 wins over that offs2 and gs2→1` in the next step
RG transformation. Conversely, if̂fs1&5Ap/2, then the
term offs2 wins over that ofus2 andgs2→2` in the next
step RG transformation. Finally, RG flows evolve to t
CDW1SP fixed point in the former case while in the latter
does towards the DSC fixed point. Thus, forg35g4.0 and
gs1(0),0, the phase transition at the boundary of CD
1SP↔DSC becomes first order as the correlation length
now finite. However, a second-order transition is also p
sible here too. If the spin bosonfs1 is quantum disordered
then ^cos(A4pfs1)&50 and once again we get an Isin
critical point of the same kind discussed above. Hence,
general conclusion is that this phase boundary may be
second-order transition~with Ising criticallity! or at a first-
order transition, with an Ising-like tricritical point in be
tween. Similarly,g35g4,0 at gs250 is the boundary of
DDW1DC↔SSC, which is critical and leads to the fixe
point at (0,0,2`,2`) or to a first order whengs1.0 or
gs1,0, respectively.

Another pair of fixed points (2`,0,7`,6`) controls
the phase boundaries of the DDW1DC↔DSC transition at
g352g4,0, where^fs1&50, and the phase boundaries
the CDW1SP↔SSC transition atg352g4.0, where
^fs1&5Ap/2; gs1→2` no matter what its initial value is
The residual interaction for thes2 sector is still described
by Eq. ~3.5! but now withg3* 52g4* . Thus, the amplitudes
of cosA4pfs2 and cosA4pus2 are kept equal and this
phase boundary is also in the universality class of the Is
critical point. The Ising order and disorder operators can
determined accordingly. The critical phase boundaries
summarized in Table II.

The initial valuegs2(0) has important effects on phas
boundaries. In Fig. 2, we present the result of a numer
integration of Eq.~3.2! for gs1(0).0; gs2.0 favors the
growth of ug3u but disfavors that ofug4u, and conversely
gs2,0 favors the growth ofug4u but disfavors that ofug3u.
Let us begin with the casegs2(0).0. For ug3(0)u
&ug4(0)u, at first gs2 decreases, then it reaches a posit
minimum and finally it increases. Thus,ug3u increases faste
than ug4u and eventually it wins over it. However, i
ug3(0)u!ug4(0)u, gs2 decreases monotonically to negativ
values andug4u still wins overug3u. As a result, both regions
of the phase diagram with DDW1DC order and CDW1SP
order expand beyond the lineg356g4, and the correspond
ing areas ofd-wave ands-wave superconductivities shrink
Due to the symmetry of Eq.~3.2!, the situation is reversed
for gs2(0),0. For an initial point located on one of thes
phase boundaries, its RG trajectory flows to the correspo
4-7
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ing unstable fixed point, as shown in Fig. 3. Forgs1(0)
,0, the effect ofgs2(0) is similar, but the phase boundarie
CDW1SP↔DSC and DDW1DC↔SSC are now first-orde
transitions and there are no accessible critical points.

We conclude this section with some comments on
DDW phase which has attracted considerable interest
cently. Until now, there is no solid numerical evidence aw

FIG. 2. Phase boundaries with positive initial value ofgs1

@gs1(0)50.2# and different initial values ofgs2(0) with dashed
line @gs2

(0)50#, solid points @gs2
(0)50.1#, and triangles

@gs2
(0)520.1#. Phase boundaries of CDW1SP↔DSC, DDW

1DC↔SSC become of first order forgs1(0),0.

FIG. 3. RG flows in the three-dimensional parameter space w
gs1(0).0. The dashed lines mark the critical surface.ug3u wins
over ug4u on the left of the surface andug4u wins overug3u on the
right. On the critical surface, the RG trajectories flow to the li
ug3u5ug4u.
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from half filling.40,42 For the two-leg ladder, we find~see
Appendix A! that the DDW phase may exist but it is nece
sarily incommensurate. We also findV' , large and positive,
reducesg4 and enhancesgs2 , which is favorable for the
DDW phase to exist. However, a negativeg3 with magnitude
comparable toug4u is also needed. Thus, we suggest to lo
for it in the regimesV'@Vd@Vi.0, which has only repul-
sive interactions, or inV'.0.Vi , which has some attrac
tive interactions~and thus is less physically relevant!. These
arguments agree with the results of a recent two-dimensio
mean-field calculation44 that the HubbardU alone cannot
stabilize the DDW phase and that negative nearest-neigh
interactions are needed. However,V' ,Vi,0 together favor
d-wave superconductivity over the DDW state.

IV. THE PHASE DIAGRAM AT HALF FILLING

Let us now discuss the phase diagram at half filling. T
main change is the presence of Umklapp terms. Compare
the incommensurate case discussed in Sec. III, the main
ference is that at half filling theZ2 symmetries behind two-
fold degeneracies found in away from half filling now can
broken spontaneously, with possible phase transitions
tween the CDW and the spin-Peierls phases, and betwee
DDW and the DC phases. Since much of the analysis
rather similar, here we will only sketch the main difference

The set of RG equations is now more complicated:

dKc1

dl
52

Kc1
2

8p2
~guc

2 1gu3
2 1gu4

2 1gu5
2 !,

dKc2

dl
5

1

8p2
~g3

21g4
21g5

2!,

dKs1

dl
52

Ks1
2

8p2
~g1

21g2
21g5

21gu5
2 !,

dKs2

dl
52

Ks2
2

8p2
~g1

21g4
21gu4

2 !1
1

8p2
~g2

21g3
21gu3

2 !,

dg1

dl
5~22Ks12Ks2!g12

g4g5

2p
2

gu4gu5

2p
,

dg2

dl
5S 22Ks12

1

Ks2
Dg21

g3g5

2p
1

gu3gu5

2p
,

dg3

dl
5S 22

1

Kc2
2

1

Ks2
Dg31

g2g5

2p
1

gu3guc

2p
,

dg4

dl
5S 22

1

Kc2
2Ks2Dg42

g1g5

2p
1

gu4guc

2p
,

dg5

dl
5S 22

1

Kc2
2Ks1Dg52

g1g4

2p
1

g2g3

2p
1

gu5guc

2p
,

th
4-8
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dguc

dl
5S 22Kc12

1

Kc2
Dguc1

g3gu3

2p
1

g4gu4

2p
1

g5gu5

2p
,

dgu3

dl
5S 22Kc12

1

Ks2
Dgu31

g2gu5

2p
1

g3guc

2p
,

dgu4

dl
5~22Kc12Ks2!gu42

g1gu5

2p
1

g4guc

2p
,

dgu5

dl
5~22Kc12Ks1!gu52

g1gu4

2p
1

g2gu3

2p
1

g5guc

2p
.

~4.1!

We will not be interested here in solving these RG equati
in their full glory, but only in the regime whereKc1!1 and
Kc2;1. For this range of parameters, there are a numbe
useful hierarchies of scales which considerably simplify
analysis.

Contrary to what happens away from half filling, the fie
fc1 no longer decouples due to the effects of the Umkla
terms of Eq.~2.5!. Clearly,fc1 plays a role quite similar to
that of uc2 . Indeed, in this regime,guc is the most relevan
coupling and it is associated with an operator with scal
dimensionKc111/Kc2 . This operator takes the RG flow
close to a fixed point at which the fieldfc1 acquires a gap
approximately of the formmc1'a21uguc(0)u1/(12Kc1(0)).
In this regime, the fielduc2 behaves roughly in the sam
way as in Eq.~3.2!. Here too, the coupling constantgc2

flows to strong coupling, 1/Kc2→0, and a gapmc2 de-
velops in this sector as it does away from half filling. W
will set ^fc1&5Ap/2, correspondinglŷ uc2&50 or Ap
when guc(0).0 or ,0, respectively, so tha
^cosA4pfc1&'2(amc1)Kc1(0) and ^cosA4puc2&
'sgn(guc)(amc2)1/Kc2(0).

Once the fieldsfc1 anduc2 become pinned close to the
classical values, the effective residual interactions among
remaining fluctuating degrees of freedom have an effec
Hamiltonian of the form

He f f5
cosA4pfs1

2~pa!2
~g1cosA4pfs22g2cosA4pus2!

1
1

2~pa!2
~g3* cosA4pus21g4* cosA4pfs2

1g5* cosA4pfs1!, ~4.2!

where g3,4* (0)5g3,4(0)^cosA4puc2&2gu3,u4(0)
3^cosA4pfc1& and g5* (0)5g4* (0)2g3* (0). If guc(0) is
not small compared to the initial~or bare! values of the other
coupling constants, this first step, of the renormalizat
group flow is rather quick. In this step the marginal coupli
constants cannot change very much and t
u^cosA4pfc1&u@u^cosA4puc2&u is a good approximation
Hence, the renormalized residual couplings are appr
mately (g3* ,g4* ,g5* );„gu3(0),gu4(0),gu5(0)….

The new RG equations, which control the subsequent
flow, are the same as in Eq.~3.2! after setting 1/Kc2→0.
11510
s

of
e

p

g

he
e

n

s

i-

G

Here too, the SU(2) conditiong5* 5g4* 2g3* is obeyed, albeit
among renormalized couplings. The resulting stable pha
and the phase boundaries between them are given in
phase diagrams of Figs. 4 and 5. The corresponding st
fixed points and values of pinned fields are summarized
Table III. The critical~or unstable! fixed points are given in
Table IV. Umklapp terms break the symmetry group toC4v
and thus remove the degeneracy between CDW and
phases, and between the DDW and DC phases. Hence
four states become distinct phases with true long-range or
which break the residualZ2 symmetry spontaneously. At th
quantum phase transitions between CDW and SP, and
tween DDW and DC, the symmetry is U~1!.

Perturbative RG studies of Refs. 35 and 36 have descr
the CDW and DDW fixed points with the property that th
coupling constants~written in our notation! satisfy

2g256g356g552gu35gu557guc→1`,

FIG. 4. Stable phases and phase boundaries at half filling w
gs2

(0)50,gs1(0).0, and guc(0).0. Phase boundaries 1,2,5
represent first-order transitions whengs1(0),0. The critical fixed
points for the transitions from phases in this figure to their coun
parts in Fig. 5 are analogous to those of Fig. 2.

FIG. 5. Phase diagram and boundaries at half filling w
gs2

(0)50,gs1(0).0, and guc(0),0. Note that here we use
2g3* and2g4* as thex,y axes.
4-9
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g15g45gu450, ~4.3!

where the upper~lower! sign holds for the CDW~DDW!
phase. It turns out that a model with this particular choice
coupling constants was proposed by Scalapino, Zhang
Hanke ~SZH! ~Ref. 34! as a ladder model of the SO~5!
theory. However, Lin, Balents, and Fisher found that, at le
to one-loop order in a perturbative RG~Ref. 35!, the sym-
metry is enlarged actually to SO~8!. Moreover, these author
found, also within a perturbative RG, that the SO~8! mani-
fold is at least locally stable, i.e., small deviations from th
trajectory converge to this trajectory under the RG flow.
terestingly, the SO~8! manifold is an integrable fermionic
system for which a number of exact properties have b
calculated using the Bethe Ansatz.49 SO~8! is clearly a dy-
namical symmetry which is possible because all the op
tors that are involved~back in the fermionic representation!
are of dimension two, they are superficially marginal b
become marginally relevant due to fluctuations leading to
development of a gap.

However, for more generic values of the coupling co
stants this dynamical symmetry does not necessarily aris
is not known that how large the basin of attraction of t
SO~8! manifold actually is. In fact, using bosonization met
ods, we find that far away from the SO~8! manifold, the
scaling dimensions of these operators begin to differ sign
cantly from each other and thus evolve differently under
RG @see Eq.~4.3!#. In particular, by checking their scalin
dimensions, we find that the renormalized couplings c
renormalize differently from each other as

ug2u!ug3u5ug5u!ugu3u5ugu4
u!ugcu→`

g1 ,g4 ,gu4→0 ~4.4!

TABLE IV. Fixed points at half filling: Unstable fixed points
which have the common fixed valuegs250. Here too,^fc1&
5Ap/2, and the SU(2) condition requiresg5* 5g4* 2g3* . The col-
umn on the right indicates which transition is controlled by ea
unstable fixed point.

guc gs1 g3* ,g4* ,g5* uc2 fs1 Transition

1 1` 0 1`,1`,0 0 / DSC1SDW↔SP
2 1` 0 2`,2`,0 0 / SSC1DCt↔DDW

3 1` 2` 2`,1`,1` 0
Ap

2
DSC1SDW↔DDW

4 1` 2` 1`,2`,2` 0 0 SSC1DCt↔SP

5 2` 0 2`,2`,0
Ap

2
/ DSC1SPt↔CDW

6 2` 0 1`,1`,0
Ap

2
/ SSC1DDWt↔DC

7 2` 2` 1`,2`,2`
Ap

2
0 DSC1SPt↔DC

8 2` 2` 2`,1`,1`
Ap

2

Ap

2
SSC1DDWt↔CDW
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in all the four phases of CDW, DDW, SP, and DC~ Recall
that the signs of the coupling constants change in some o
phases.!. Nevertheless, what is clear is that the spectr
found in these more anisotropic~and more generic! regimes
is smoothly connected to the multiplets found in the SO~8!
limit. In other words, there is no phase transition separat
these regimes, but the spectrum is organized differently.

Let us now discuss the phase transitions between
CDW and the SP phases, and the between the DDW and
and phases, and to the associated critical fixed points. As
noted before, these phase transitions are driven by the
klapp terms, the most relevant of which is controlled by t
coupling constantguc . Hence,at the critical pointseparating
the SP and CDW phases, and the DDW and DC phases
Umklapp terms are tuned to zero. The critical fixed poin
coincide with the stable fixed points of the incommensur
CDW1SP phase and DDW1DC phase respectively. In bot
cases, the transition is controlled by the sign ofguc . We also
note that the renormalized coupling constantg3* has different
signs on both sides of this phase transition. This is beca
close to the transitiong3* 'g3^cosA4puc2&, and ^uc2&50
in the SP phase whilêuc2&5Ap/2 in the CDW phase. The
same is true for the phase transition between the DDW
the DC phases.

It can be shown that, if only charge interactions a
considered,50 thenguc5gu3 at the bare level. In this regime
the CDW and SP phases are more easily accessible tha
DDW and DC phases. There is a strong numerical evide
for a commensurate DDW phase at half filling in
t-J-Hubbard ladder41 who included Heisenberg-like ex
change interactions at the microscopic level. It is easy to
that although the inclusion of microscopic exchange inter
tions does not lead to a different low-energy theory,
changes the strengths of the different effective couplings
particular, it makes the DDW phase more accessible.
simplicity, we discuss the conditions of the commensur
DDW phase on the SZH ladder which only includes nonz
interactionsU,V' ,J' . The coupling constants are given
the weak interaction limit in Appendix A. Let us suppose th
V' and J'.0. First of all, we need positivegc1 to set up
the overall repulsive interaction, i.e.,U12V'.0. A large
J' helps to makeguc.0 and gu3,0 simultaneously i.e.,
1
4 J'.U2V'.2 3

4 J' . But J' cannot be too large, other
wise negativegs2 suppresses the DDW phase. Forugu3u
.ugu4u, which can be achieved withU,0, this phase is
stabilized. ButuUu cannot be too large, otherwisegc1 would
become negative. The region where the commensurate D
was found in Ref. 41 agrees with this analysis. Again,
need to keep in mind that this naive analysis only ma
sense in the weak-coupling limit, which also neglects effe
from many irrelevant operators. Thus, we do not expect
analysis to give a precise location of the phase boundary

Now we discuss the remaining phases and phase tra
tions. Upon a careful study of which fields become pinn
and what are their allowed expectation values, we concl
that the remaining four phases are actually quantum di
dered Haldane-like states. For example, there is a phas
which d-wave superconductivity and the SDW order para

h
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eters~DSC1SDW! are quantum disordered. The order p
rameter for DSC is very sensitive to fluctuations in thec1
sector sinceODSC}eiuc1. Similarly, thex, y, andz compo-
nents of the SDW order parameter are controlled
fluctuations in the s6 sector since OW SDW

}„sin(Apus2),sin(Apus1),cos(Apus1)…. At this fixed
point, the fieldsuc1 and us6 are not pinned and fluctuat
wildly. Nevertheless, the remaining fields in the expressi
for these order parameters do provide for a finite amplitu
even though the fluctuations of both phase and orienta
are so strong that the system is quantum disordered.
analysis of other three phases,s-wave superconductivity and
triplet DC (SSC1DCt), d-wave superconductor and triple
spin-Peierls (DSC1SPt), and s-wave superconductor an
triplet d-density wave (SSC1DDWt), is similar. Because o
large charge gaps, the low-energy physics of their spin se
may be described by the corresponding O(3) nonlineas
model without a Berry phase term, which is quantum dis
dered.

The phase transition between the DSC1SDW phase and
the DSC1SPt phase~see Figs. 4 and 5! is the commensurate
limit of the d-wave superconductor found away from ha
filling. A similar relation holds for the phase transition b
tween the SSC1DCt phase, the SSC1DDWt phase, and the
s-wave superconductor.

Finally, let us discuss the unstable fixed points withug3* u
5ug4* u→`,gs250, summarized in Table IV. The RG flow
starting from the phase boundaries withgs1(0).0 evolve
towards these fixed points. At these phase boundaries
order parameters for CDW, SP, DC, and DDW have pow
law correlations and have scaling dimension 3/8 at the fi
points denoted by 1,2,5, and 6, and scaling dimension 1/
the fixed points denoted by 3, 4, 7 and 8~see Figs. 4 and 5!.
On these phase boundaries, thed-wave ands-wave supercon-
ducting order parameters are quantum disordered. Simil
the SDW, SPt, DCt, and DDWt order parameters hav
power-law correlations and their scaling dimension is 3/8
the points 1,2,5,6, but are quantum disordered at po
3,4,7,8. Forgs2(0)50, at these phase boundaries, the ren
malized couplings satisfyug3* u5ug4* u as before. Nonzero
gs2(0) also has similar effects on these phase bounda
gs2(0).(,)0 favors phases CDW, SP, DC, and DD
~DSC1SDW, SSC1DCt, DSC1SPt, and SSC1DDWt), re-
spectively. Whengs1(0),0, the situation is similar excep
that transitions 1,2,5,6 become the first order and there ar
corresponding unstable fixed points.

V. CONCLUSIONS

In summary, in this paper, we studied the problem of co
peting orders in two-leg ladders, which were mapped to tw
coupled Luttinger liquids withp-h symmetry at both low
doping and at half filling. We used~Abelian! bosonization
and RG methods to study the phase diagrams of these
ders both at half filling and at low doping. Stable and u
stable fixed points of the RG flows with the correspond
phases and phase boundaries were investigated in d
First-order transitions whengs1(0),0 are found and the
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effects of gs2(0) on phase boundaries are discussed. T
C`v symmetry makes CDW and spin-Peierls, DC and DD
degenerate. In the absence of Umklapp terms, there is
incommensurate quasi-long-range order. These degener
are removed at half filling where true long-range order a
pears. Power-law fluctuatingd-wave ands-wave suprecon-
ducting phases at low doping levels become quantum di
dered at half filling, with finite amplitudes among DSC, SS
and SDW, DCt, SPt, DDWt, respectively. Suggestions o
how to best find these phases in numerical simulations w
given.

After this paper was submitted for publication, we b
came aware of the work by Tsuchiizu and Furusaki on a v
similar model~at half filling!.46 In this work, these authors
also obtained the same eight insulating phases we found
at half filling. Also after this work was submitted, we learne
of the numerical work by Schollwocket al.51 on a DMRG
study of a similar ladder model away from the half filling. A
low doping, these authors found that their results are con
tent with an inhomogeneous picture of the doped state
which the system is locally commensurate. It is our und
standing that at long length scales, the system is actu
incommensurate with discommensurations~or kinks! sepa-
rating the locally commensurate regions. On length sca
long compared to the distance between kinks, this state
haves like an effective ‘‘elastic solid’’ which in one dimen
sion has the same quantum critical behavior as a Luttin
liquid. Thus, this state is qualitatively equivalent to o
weak-coupling picture, albeit with substantially renormaliz
parameters.
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APPENDIX A: FERMIONIC HAMILTONIAN

We considered an extended Hubbard model on a lad
with a Hamiltonian of the following form:

H52t (
^ i , j s&

$ci , j s
† ci 11,j s1H.c.%2t'(̂

is&
$ci ,0s

† ci ,1s1H.c.%

1U(
i , j

ni , j↑ni , j↓1Vi(
i , j

ni , jni 11,j1V'(
i

n1,in2,i

1Vd (
i

~ni ,1ni 11,21ni ,2ni 11,1!1J'(
i

SW i ,1•SW i ,2

1Ji (
i j

SW i , j•SW i 11,j . ~A1!

Here i labels the sites along legs andj labels the legs~or
rungs!; the coupling constantsU, Vi ,V' , andVd represent
4-11
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the on-site Hubbard interaction and various nearest and n
nearest neighbor Coulomb interactions, andJ' andJi are the
Heisenberg interaction along the rungs and chains, res
tively.

After diagonalizing the kinetic part, we can rewrite th
11510
xt-

c-

above Hamiltonian with the right and left movers of th
bonding and antibonding bands represented by the opera
cR1 ,cL1 ,cR2 ,cL2 as below, where c1,2(x)5(ci1

6ci2)/A2a. In the low-energy limit, the free part of th
continuum Hamiltonian density can be written as
rrent

charge

d

H05v f 1H p

2
~JL1JL11JR1JR1!1

2

3
p~JWL1•JWL11JWR1•JWR1!J

1v f 2H p

2
~JL2JL21JR2JR2!1

2

3
p~JWL2•JWL21JWR2•JWR2!J , ~A2!

whereJi ,R,L5c i ,R,Ls
† c i ,R,Ls andJW i ,R,L5c i ,R,Ls

† c i ,R,Ls are the right and left moving components of the charge and spin cu
densities for the bonding (i 51) and antibonding (i 52) fermions, respectively.

The interaction part of the Hamiltonian splits into several terms. First, we have a set of terms involving only the
currents:

Hint,c5H U

8
1

1

2
~Vi1Vd!1

V'

4 J ~J1RJ1R1J1LJ1L1J2RJ2R1J2LJ2L!1H U

4
1~Vi1Vd!S 12

cos 2kf 1

2 D1
V'

4
2

3

8
cos 2kf 1Ji

2
3

16
J'J J1RJ1L1H U

4
1~Vi1Vd!S 12

cos 2kf 2

2 D1
V'

4
2

3

8
cos 2kf 2Ji2

3

16
J'J J2RJ2L1H U

4
1ViS 12

1

2
cosk2D

1VdS 11
1

2
cosk2D1

3

4
V'2

3

8
Jicosk21

3

16
J'J ~J1RJ2R1J1LJ2L!1H U

4
1ViS 12

1

2
cosk1 D1VdS 11

1

2
cosk1D

1
3

4
V'2

3

8
Jicosk11

3

16
J'J ~J1RJ2L1J1LJ2R!, ~A3!

wherek15kf 11kf 25p(12d), andk25kf 12kf 252sin21@t' /(2 cospd/2)#.
Next we have the couplings involving the spin currents:

Hint,s5H 2
U

6
1

Ji

2
1

J'

4 J ~JW1RJW1R1JW1LJW1L1JW2RJW2R1JW2LJW2L!2H U12~Vi1Vd!cos 2kf 11V'2
3

4
J'J JW1RJW1L

2H U12~Vi1Vd!cos 2kf 21V'2
3

4
J'J JW2RJW2L2H U12~Vi2Vd!cosk22V'2S 11

1

2
cosk2D Ji2

J'

4 J
3~JW1RJW2R1JW1LJW2L!2H U12~Vi2Vd!cosk12V'2S 11

1

2
cosk1D Ji2

J'

4 J ~JW1RJW2L1JW1LJW2R!. ~A4!

Next we have the low-energy couplings associated with singlet-pair and triplet-pair tunnelings:

Hint,pt5H U1S 2~Vi2Vd!2
3

2
Ji D coskf 1coskf 22V'1

3

4
J'J ~D1

†D21H.c.!1H 2~Vi2Vd!1
Ji

2 J sinkf 1sinkf 2~DW 1
†DW 21H.c.!

~A5!

whereD5(cR↑cL↓2cR↓cL↑)/A2 is the singlet-pair operator on a given chain andDW is its triplet counterpart. Note that 1 an
2 stand here for the chain label.

Finally, the low-energy Umklapp scattering terms are

Hum5e2idpxS H U

4
1eidpFViS 1

2
2cosk2D2VdS 1

2
1cosk2D1

3

8
JiG1

3

4
V'1

3

16
J'J N1

†N2
†

2H U1eidpF22~Vi2Vd!1S 1

2
1cosk2D JiG2V'2

J'

4 J NW 1
†NW 2

†1H U

2
2S Vi2Vd2

3

4
Ji Deidp2

V'

2
1

3

8
J'J

3~m1R
† m2L1m2R

† m1L! D1H.c., ~A6!
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Here N†5cRs
† cLs and NW †5cRs

† (sW /2)cLs are CDW and
SDW ~Néel! order parameters, respectively.m is the paring
order with 2kf momentum, for example,mR5cR,↑cR,↓ .
11510
Following the standard Bosonization procedure with t
assumption of Eq.~2.1!, we arrive at the bosonized Hami
tonian density in the Sec. II. The bare values of the we
coupling constants are given as
t
r

gc15U1Vi@41cospd ~11coskf 2!#12V'1Vd@42cospd~12coskf 2!#1
3

4
Jicospd~11cosk2!,

gc252S Vi1
3

4
Ji D cospd ~12coskf 2!2V'1cospd~11coskf 2!Vd2

3

4
J' ,

gs15U2Vicospd~11coskf 2!1Vdcospd ~12coskf 2!2
Ji

2 S 12
1

2
cospd D2

J'

2
,

gs25Vicospd~12coskf 2!1V'2Vdcospd~11coskf 2!1
Ji

2 S 12
1

2
cospd D2

1

4
J' ,

g352S Vi2Vd1
Ji

4 D @cosk21cospd#,g45U12~Vi2Vd!cosk22V'1JiS cospd2
1

2
cosk2D1

3

4
J' ,

guc5U22cospdS Vi2Vd2
3

2
Ji D2V'1

3

4
J' ,gu35U22cospd FVi2Vd2JiS 1

4
1

1

2
cosk2D G2V'2

J'

4
,

gu4
5U22 cospdF ~Vi1Vd!cosk22JiS 11

1

2
cosk2D G1V'1

J'

4
,

g15gs11gs2 , g25gs12gs2 ,

g55g42g3 , gu55gu4
2gu3 , ~A7!

where cosk2512t'
2/(2t2). Up to the first order, these coupling constants are independent of the dopingd.

When away from the half filling, the particle-hole symmetry Eq.~2.1! only holds approximately at small dopingd ask1

2p5d p,Dv f /a5d t'p. Taking these into account, there are some small residue terms as appearing in Eqs.~2.6!, ~2.7!, and
~2.8!, they vanish linearly with doping. The corresponding coupling constants are

Dgc5H 1

2
~Vi1Vd!1

3

8
JiJ sinpd sinkf 2 ,

Dgs52
1

2
~Vi1Vd!sinpd sinkf 2 ,

Dguc522 sinpdS Vi2Vd2
3

4
Ji D ,

Dgu3522sinpdFVi2Vd2JiS 1

4
1

cosk2

2 D G
Dgu4522 sinpdF ~Vi1Vd!cosk22JiS 11

1

2
cosk2D G , Dgu55Dgu32Dgu4 . ~A8!

APPENDIX B: BOSONIC REPRESENTATION OF THE ORDER PARAMETERS

The difference of the charge density between two legs reads(s(2) j 11cj s
† ( i )cj s( i )5(sc1s

† (x)c2s(x)1c2s
† (x)c1s(x).

After expressed by the right and left movers, it contains the staggered part, i.e.,OCDW . A similar situation happens to its triple
counterpartOSDW,z,x,y . Using the bosonization identitiescR,L(x)51/A2paexp$6iAp(f(x)6u(x))% and we can obtain thei
bosonic expressions as below:
4-13
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OCDW~x!

OW SDW,z,x,y~x!J 5~2 !xe2 idpxH c1Ls
† ~x!c2Rs~x!1c2Ls

† ~x!c1Rs~x!1H.c.

c1La
† ~x!~sW /2!abc2Rb~x!1c2La

† ~x!~sW /2!abc1Rb~x!1H.c.

}
2G

pa
$cos~Apfc12dpx!5

2 cosApuc2cosApfs1sinApus2

sinApuc2H cosApfs1cosApus2

cosApus1cosApfs2

2sinApus1cosApfs2

1sin~Apfc12dpx!

35
22sinApuc2sinApfs1cosApus2

2cosApuc2H sinApfs1sinApus2

sinApus1sinApfs2

cosApus1sinApfs2

6 ,

~B1!

where G equalsih↑(1)h↑(2) for the singlet andz component of the triplet-order parameters, andih↑(1)h↓(2) for x,y
components of the triplet-order parameters, and the same as below.

The difference of the bond strength between two legs is( j s(2) j 11cj s
† ( i )cj s( i 11)1H.c.5(sc1s

† (x)c2s(x1a)

1c2s
† (x)c1s(x1a)1H.c., similar is its triplet analog. Their staggered partsOSP andOW SP

t are the following:

OSP~x!

OW SP,z,x,y
t ~x!J 5~2 !x2 sinS kf 11

p

2
d D i { e2 ipdx2 idp/2H c1Ls

† ~x!c2Rs~x!1c2Ls
† ~x!c1Rs~x!2H.c.

c1La
† ~x!~sW /2!abc2Rb~x!1c2La

† ~x!~sW /2!abc1Rb~x!2H.c.

}
2G

pa
$cos~Apfc12dpx2dp/2!5

2sinApuc2sinApfs1cosApus2

cosApuc2H sinApfs1sinApus2

sinApus1sinApfs2

cosApus1sinApfs2

1sin~Apfc12dpx2dp/2!5
2cosApuc2cosApfs1sinApus2

sinApuc2H cosApfs1cosApus2

cosApus1cosApfs2

2sinApus1cosApfs2

6 . ~B2!

It is clear thatOCDW andOSP are real and imaginary parts ofc1Ls
† c2Rs1c2Ls

† c1Rs , respectively.
Next we present the staggered part of the diagonal current density,i ( j (2) j 11cj

†( i )cj 11( i 11)2H.c., and its triplet analog
as below:

ODC~x!

OW DC,z,x,y
t ~x!

J 5~2 !xsin~kf 11dp/2!$e2 ipdx2 id/2pH c1Ls
† ~x!c2Rs

† ~x!2c2Ls
† ~x!c1Rs

† ~x!)1H.c.

c1La
† ~x!~sW /2!abc2Rb

† ~x!2c2La
† ~x!~sW /2!abc1Rb

† ~x!1H.c.

}
2G

pa
$cosSApfc12pdx2

dp

2 D 5
2cosApuc2sinApfs1cosApus2

2sinApuc2H sinApfs1sinApus2

sinApus1sinApfs2

cosApus1sinApfs2

1sinSApfc12pdx2
dp

2 D 5
22 sinApuc2cosApfs1sinApus2

cosApuc2H cosApfs1cosApus2

cosApus1cosApfs2

2sinApus1cosApfs2

6 . ~B3!

The difference of the current density along the legs isi ( j (2) j 11@cj s
† ( i )cj s( i 11)2H.c.#. Its staggered part is
115104-14
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~2 !x2cosS k1 f1
dp

2 D ~2 i !(
s

$e2 ipdx2 idp/2~c1sL
† ~x!c2sR~x!2c2sL

† ~x!c1sR~x!!2H.c.%.

Similarly, the staggered current along the rungi @c2s
† ( i )c1s( i )2H.c.# is

~2 !xt'H i

2 (
d

e2 ipdx~c1sL
† c2sR2c2sL

† c1sR!2H.c.J .

It can be shown that they satisfy the continuous relation,36 so does its triplet counterpart,OW DDWt staggered currents along leg
and rungs have thed-wave feature. We use currents along the rung as order parameters. Their bosonized forms are

ODDW~x!

OW DDWt,z,x,y~x!
J }

2G

pa
$cos~Apfc12pdx!5

2sinApuc2cosApfs1sinApus2

2cosApuc2H cosApfs1cosApus2

cosApus1cosApfs2

2sinApus1cosApfs2

1sin~Apfc12pdx!

35
2 cosApuc2sinApfs1cosApus2

2sinApuc2H sinApfs1sinApus2

sinApus1sinApfs2

cosApus1sinApfs2
6 .

~B4!

It can also be seen that the DC and DDW order parameters are the real and imaginary parts ofc1Ls
† c2Rs2c2Ls

† c1Rs ,
respectively.

Finally, the bosonized forms of thed-wave ands-wave pairing order parameters are

Dd5~c1L↑c1R↓2c1L↓c1R↑!2~c2L↑c2R↓2c2L↓c2R↑!

5
2h↑~1!h↓~1!

pa
eiApuc1~2cosApuc2sinApfs1sinApfs21 isinApuc2cosApfs1cosApfs2!,

Ds5~c1L↑c1R↓2c1L↓c1R↑!1~c2L↑c2R↓2c2L↓c2R↑!

5
2h↑~1!h↓~1!

pa
eiApuc1~cosApuc2cosApfs1cosApfs21 i sinApuc2sinApfs1sinApfs2!. ~B5!
rd
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