Course Syllabus
pdf file
Lecture notes
Lecture 1 : Jackiw-Rebbi mode (domain-wall fermions), Su-Schrieffer-Heeger model
Ref: Heeger, Kivelson, Schrieffer, Su, RMP 60, 781 (1988).
Jackiw and Rebbi, PRD 13, 3398 (1976).
Lecture 2 : Spin model, AKLT, string order, edge mode
Lecture 3 : Topological 1D superconductor, Majorana modes, Kitaev chian
Lecture 4 : Integer quantum Hall (Landau gauge), Laughlin argument
Lecture 5 : Landau level (symmetric gauge), guiding center
Supplementary material : U(1) Berry phase
Supplementary material : Geometric picture on Berry phase
Supplementary material : Non-Abelian Berry phase
Lecture 6 : Topological index for quantum hall systems
Lecture 7 : Calculate the QHE conductance
Lecture 8 : The lattice Hofstadter problem -- Dirac fermions
Lecture 9 : Bulk-edge correspondence -- Riemann surfaces, link number
Lecture 10 : Honycomb lattice - graphene, valley Hall, quantum anomalous Hall
Lecture 11 : Quantum spin Hall, Kane-Mele, Zhang's model
Howework assignment
Final project
Back to home
Ref: Heeger, Kivelson, Schrieffer, Su, RMP 60, 781 (1988).
Jackiw and Rebbi, PRD 13, 3398 (1976).
Howework assignment
Final project
Last modified: Jan 7, 2010.