HW 1

Problem 2.1.6.

Show that the propagator of a harmonic oscillator has the form

$$
G\left(x_{b}, t, x_{a}, 0\right)=A(t) \exp \left(\frac{i m \omega_{0}}{2 \sin \left(t \omega_{0}\right)}\left[\left(x_{b}^{2}+x_{a}^{2}\right) \cos \left(\omega_{0} t\right)-2 \dot{x_{b}} x_{a}\right]\right)
$$

Use the normalization condition or the path integral to show that

$$
A(t)=\left(\frac{m \omega_{0}}{2 \pi \mathrm{i} \sin \left(t \omega_{0}\right)}\right)^{1 / 2}
$$

Problem 2.3.6.

Spin waves: Consider a spin- S quantum spin chain $H=\sum_{i} J S_{i} S_{i+1}$. For $J<0$, the classical ground state is a ferromagnetic state with $S_{i}=S \hat{z}$. For $J>0$, it is an anti-ferromagnetic state with $S_{i}=S \hat{z}(-)^{i}$.

1. Write down the action for the spin chain.
2. Find the equation of motion for small fluctuations $\delta S_{i}=S_{i}-S \hat{z}$ around the ferromagnetic ground state. Transform the equation of motion to frequency and momentum space and find the dispersion relation. Show that $\omega \dot{\propto} k^{2}$ for small k.
3. Find the equation of motion for small fluctuations $\delta S_{i}=S_{i}-S \hat{z}(-)^{i}$ around the anti-ferromagnetic ground state. Find the dispersion relation. Show that $\omega \propto|k-\pi|$. for k near to π.
