Pry 220 Final exam Jun $2 n 20$
we study the su(t) group and its applications. Its carton subalgehra

$$
T_{1}^{(3)}=1 / 2\left(\begin{array}{lll}
1 & -1 & \\
& 0 & \\
& 0 & 0
\end{array}\right), \quad T_{2}^{(3)}=\frac{1}{\sqrt{12}}\left(\begin{array}{lll}
1 & & \\
& & -2 \\
& & 0
\end{array}\right), \quad T_{3}^{(3)}=\frac{1}{\sqrt{22}}\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right) .
$$

(1) Draw the Dykin digram of su(4) and explain the meanings of the symbols,
(2) Denote the simple roots as

$$
\alpha^{\prime}=(1,00), \quad \alpha^{2}=(-1 / 2, \sqrt{3} / 2,0), \quad \alpha^{3}=(0,-\sqrt{1 / 3}, \sqrt{2 / 3})
$$

(Here, we use the anvention of positive roots by counting nom-negative components from right to left).
Construct the cartan Matrix fur the Su(4). And Based on the Cantan matrix, construct all other root vectors.
(your donot need to work out their commutation rules).
(3) Work ont the fundement weights $\vec{\mu}_{1}, \vec{\mu}_{2}, \vec{\mu}_{3}$. Calculate the dimensions and the Casimirs of the representations $\overrightarrow{\mu_{1}}, \overrightarrow{\mu_{2}}, \overrightarrow{\mu_{3}}$. (Acatually, they correspond to the young patterns $, ~ B, ~ B$, respectively).
(4) You don't need to prove: The representation of the weight $\vec{\mu}=l_{1} \vec{\mu}_{1}+l_{1} \vec{\mu}_{1}+l_{1} \vec{\mu}_{3}$ denoted as $\left(l_{1}, l_{1}, l_{3}\right)$, corresponds to

L What are the dimensions and the value of casimir of the representation $\left(l_{1}, l_{2}, l_{3}\right)$? (Yore can use the knowledge learned in lect 15).

Consider the fundamental spines Rep of the su(4). Its σ_{1}-type generators $\left(T_{a b}^{(1)}\right)_{c d}=\frac{1}{2}\left(\delta_{a c} \delta_{b d}+\delta_{b c} \delta_{a d}\right)$, and its σ_{2}-type generators

$$
\left(T_{a h}^{(2)}\right)_{c d}=\frac{-i}{2}\left(\delta_{a c} \delta_{b d}-\delta_{b c \delta a d}\right) \text { where } 1 \leqslant a<b \leqslant 4 \text {. }
$$

The σ_{3}-type matrices $\left(T_{a}^{(3)}\right)_{c d}$ are defined in page $1,1 \leqslant a \leqslant 3$.
5. As a warming up, please

Conside a 4-site plaguette on each site. We define an Su(2) spin $-1 / 2$ Heisenberg model as
$H=J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}$, where $\langle i j\rangle$ represents neighbouring sites. This Hamitenican can be solved by the following trick:

$$
\begin{equation*}
H=J / 2\left[C_{2}(1234)-C_{2}(13)-C_{2}(24)\right] \tag{3}
\end{equation*}
$$

where $C_{2}(13)=\vec{S}_{13} \cdot \vec{S}_{13}$ with $\vec{S}_{13}=\vec{S}_{1}+\vec{S}_{3}$ - the total spin of \vec{S}_{1} and $\vec{S}_{3} ; \quad C_{2}(24)=\vec{S}_{24} \cdot \vec{S}_{24}$ with $\vec{S}_{24}=\vec{S}_{2}+\vec{S}_{4}$.

$$
C_{2}(234)=\vec{S}_{\text {tot }} \cdot \vec{S}_{\text {tot }} \text { with } \vec{S}_{\text {tot }}=\vec{S}_{1}+\vec{S}_{2}+\vec{S}_{3}+\vec{S}_{4}
$$

There are $2^{\wedge} 4=16$ states in the Hilbert space, please classify all the eigenstates of H in terms of $\mathrm{SU}(2)$ representations, and calculate their eigenenergies.
6.- We consider its su(4) version, and on each site, there is a su(4) fundamental spier if quartet. We define the su(4) Heisenberg model as

$$
\begin{aligned}
H=J \sum_{\langle i j\rangle} & {\left[\sum_{1 \leqslant a<b \leqslant 4} T_{a b}^{(1)}(i) T_{a b}^{(1)}(j)+T_{a b}^{(2)}(i) T_{a b}^{(2)}(j)\right.} \\
& \left.+\sum_{1 \leqslant a \leqslant 3} T_{a}^{(3)}(i) T_{b}^{(3)}(j)\right]
\end{aligned}
$$

You can use a similar. "trick is to su(z) case to solve this problem. - You can contract the su(4) version of $C_{2}(1,3)$. $C_{2}(2,4)$, and $C_{2}(1234)$. You can diagonalize $C_{2}(13)$ by decomposing the direct product $\square \times \square$.
Then you can diagonalize $C_{2}(1234)$ by decomposing

$$
(\square \times \square) \times(\square \times \square)
$$

There are $4^{4}=256$ states in the Hilbert space. Solve each eigen-energy including the ground state and all excited states. Mark the young patter of each o' set of eigenstates. Figure out the dimensions, i.e. the degenercies, of each set of eigenstates.

