PHYS 212A: Homework 5

December 8, 2013

3.21

a
We define $L_{i}=\epsilon_{i j k} x_{j} p_{k}$. Writing x and p in terms of creation and annihilation operators gives,

$$
\begin{equation*}
L_{i}=\epsilon_{i j k} i \hbar\left(a_{j}^{\dagger}+a_{j}\right)\left(a_{k}^{\dagger}-a_{k}\right)=\epsilon_{i j k} \frac{i \hbar}{2}\left(a_{j} a_{k}^{\dagger}-a_{j}^{\dagger} a_{k}\right)=\epsilon_{i j k} i \hbar a_{j} a_{k}^{\dagger} \tag{1}
\end{equation*}
$$

The other result can be derived similarly.
b
The states ketqlm are defined as eigenstates of the L_{z} and L^{2} operators. Here since $N=2 q+l=$ $n_{x}+n_{y}+n_{z}=1$, we have three possible kets $|100\rangle,|010\rangle,|001\rangle$. It is helpful to consider what happens to each state under the angular momentum operators.

$$
\begin{align*}
& L_{z}|100\rangle=i \hbar\left(a_{x} a_{y}^{\dagger}-a_{y} a_{x}^{\dagger}\right)|100\rangle=i \hbar|010\rangle \tag{2}\\
& L_{z}|010\rangle=-i \hbar|100\rangle \tag{3}\\
& L_{z}|001\rangle=0 \tag{4}
\end{align*}
$$

Under L^{2} any of the 3 states will have the same result, $L^{2}|001\rangle=\hbar^{2}[1(1+1)]|001\rangle$, this shows $|010\rangle_{q l m}=|001\rangle_{n}$. From inspection, we can determine that $|01 \pm 1\rangle_{q l m}=\frac{1}{\sqrt{2}}\left(|100\rangle_{n} \pm i|010\rangle_{n}\right)$

c

Now we have 6 possible states to consider, and find that

$$
\begin{equation*}
|020\rangle_{q l m}=\frac{1}{\sqrt{3}}(|200\rangle+|020\rangle+|002\rangle) \tag{5}
\end{equation*}
$$

d

Following the same procedure as above, we find

$$
\begin{align*}
& L_{z}|200\rangle=i \hbar(|110\rangle) \tag{6}\\
& L_{z}|020\rangle=-i \hbar(|110\rangle) \tag{7}\\
& L_{z}|110\rangle=i \hbar \sqrt{2}(|020\rangle-|200\rangle) \tag{8}\\
& L_{z}|101\rangle=i \hbar(|011\rangle) \tag{9}\\
& L_{z}|011\rangle=-i \hbar(|101\rangle) \tag{10}
\end{align*}
$$

By inspection, we can determine the unnormalized $m= \pm 1$ states are $|101\rangle \pm i|011\rangle$. Similarly, for $m= \pm 2$ states are $\frac{1}{\sqrt{2}}(|200\rangle-|020\rangle) \pm i|110\rangle$

3.22

a
For $x=0$ we have

$$
\begin{equation*}
g(x, t)=1 /(1-t)=1+t+t^{2}+\ldots=\sum L_{n}(0) \frac{t^{n}}{n!} \tag{12}
\end{equation*}
$$

Comparing powers of t, we can see $L_{n}(0)=\left.\frac{\partial^{n} g(x, t)}{\partial t^{n}}\right|_{t=0}=n$! The other result follows similarly.
b

$$
\begin{equation*}
\frac{\partial g}{\partial x}=\frac{-t}{1-t} g \tag{13}
\end{equation*}
$$

Inserting the series expression gives

$$
\begin{equation*}
(t-1) \sum L_{n}^{\prime}(x) \frac{t^{n}}{n!}-\sum L_{n}^{\prime}(x) \frac{t^{n}}{n!}=t \sum L_{n}(x) \frac{t^{n}}{n!} \tag{14}
\end{equation*}
$$

Rearranging indices to collect like powers of t, we find

$$
\begin{equation*}
n L_{n-1}^{\prime}(x)-L_{n}^{\prime}(x)=n L_{n+1}(x) \tag{15}
\end{equation*}
$$

c

$$
\begin{gather*}
\frac{\partial g}{\partial t}=\frac{1-t-x}{(1-t)^{2}} g \tag{16}\\
\left(1-2 t+t^{2}\right) \sum L_{n}(x) \frac{t^{n-1}}{(n-1)!}=(1-t-x) \sum L_{n}(x) \frac{t^{n}}{n!} \tag{17}
\end{gather*}
$$

Again grouping powers of t, we find the sought after expression.

d

This is most easily proved using the generator

$$
\begin{equation*}
x g^{\prime \prime}+(1-x) g^{\prime}+n g=0-\frac{e^{\frac{-x x}{1-t}} t(1-x)}{(1-t)^{2}}+\frac{e^{\frac{-t x}{1-t} t} t^{2} x}{(1-t)^{3}}+t\left[\frac{e^{\frac{-t x}{1-t}}}{(1-t)^{2}}-\frac{e^{\frac{-t x}{1-t}} x}{(1-t)^{2}}-\frac{e^{\frac{-t x}{1-t}} t x}{(1-t)^{3}}\right]=0 \tag{18}
\end{equation*}
$$

3.15
3.24
3.26

From $L_{ \pm}=L_{x} \pm i L_{y}$, we have $L_{x}=I_{2}\left(L_{+}+L_{-}\right)$and $L_{y}=\frac{-i}{2}\left(L_{+}-L_{-}\right)$, and from (3.5.39) and (3.5.40) $L_{ \pm}|\ell, m\rangle=c_{ \pm}(\ell, m)|\ell, m+1\rangle=h[\ell(\ell+1)-m(m+1)]^{\frac{1}{2}}|\ell, m \pm 1\rangle$. Hence $\left\langle L_{x}\right\rangle=$ $\langle\ell m| I_{1_{2}}\left(L_{+}+I_{2}\right)|\ell m\rangle=0$ since $\left\langle\ell m \mid \ell m^{\prime}\right\rangle=\delta_{m m}, \quad$ Similarly $\left\langle I_{y}\right\rangle=\left\langle\ell_{m}\right| L_{y}|\ell m\rangle=0$. Now $\left\langle L_{x}^{2}\right\rangle=\langle\ell m| \frac{1_{4}}{4}\left(L_{+} L_{+}+L_{+} L_{-}+L_{-} L_{+}+L_{-} L_{-}\right)|\ell m\rangle$. But $L_{+} L_{-}|\ell m\rangle=c_{-}(\ell, m) \times$ $c_{+}(\ell, m-1) \mid \ell m>$ and $L_{-} L_{+}\left|\ell m>=c_{+}(\ell, m) c_{-}(\ell, m+1)\right| \ell m>$ while $\langle\ell m| L_{+} L_{+}\left|\ell_{m}\right\rangle=$ $\langle\ell m| L_{-} L_{-}|\ell m\rangle=0$ since states of different m values are orthogonal. Hence $\left\langle L_{x}^{2}\right\rangle$
 $\left.c_{+}^{2}(\ell, m)\right\}=\frac{u^{2}}{4}\{\ell(\ell+1)-m(m-1)+\ell(\ell+1)-m(m+1)\}=\frac{h^{2}}{2}\left\{\ell(\ell+1)-m^{2}\right\} . \quad$ Similarly $\left\langle L_{y}^{2}\right\rangle=$
$\langle\ell m|-\frac{1}{4}\left(L_{+} L-L L-L L+\right.$ $\langle\ell m|-\frac{1}{4}\left(L_{+} L_{+}-L_{+} L_{-}-L_{-} L_{+}+L_{-} L_{-}\right)|\ell m\rangle=h_{4}\langle\ell m|\left(L_{+} L_{-}+L_{-} L_{+}\right)|\ell m\rangle=\left\langle L_{x}^{2}\right\rangle$.

Semiclassical interpretation: We know that $\overrightarrow{\mathrm{L}}^{2}|\ell m\rangle=n^{2} \ell(\ell+1)|\ell m\rangle, L_{z}^{2}|\ell m\rangle$ $=\chi^{2} m^{2}|\ell m\rangle$. Thus $\left\langle\vec{L}^{2}\right\rangle=\ell(\ell+1) K^{2}$ and $\left\langle L_{z}^{2}\right\rangle=m^{2} \gamma^{2}$. In the classical correspondence $\vec{L}^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$ expresses itself in terms of the corresponding expectation values, and indeed $\left\langle L_{x}^{2}\right\rangle+\left\langle I_{y}^{2}\right\rangle+\left\langle L_{z}^{2}\right\rangle=3_{2} h^{2}\left(\ell(l+1)-m^{2}\right)+1_{2} h^{2}\left(\ell(\ell+1)-m^{2}\right)$ $+m^{2} h^{2}=\ell(\ell+1) h^{2}=\left\langle\overrightarrow{\mathrm{L}}^{2}\right\rangle$.

We are to add angular momenta $j_{1}=1$ and $j_{2}=1$ to form $j=2,1,0$ states. Express all nine $\{j, m\}$ eigenkets in terms of $\left|j_{1} j_{2}, m_{1} m_{2}\right\rangle$. The simplest states are $j_{1} m, m_{1}= \pm 1 ; j_{2}=1, m_{2}= \pm 1$, i.e. $|j=2, m=2\rangle=\mid++>$ and likewise $|j=2, m=-2\rangle=$ $\mid->$. Using the ladder operator method we have $J_{-}=J_{1-} \oplus J_{2-}$ and (setting $h=$
1 for convenience) from (3.5.40) $J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)}|j, m-1\rangle$. So $j_{-} \mid j=2, m=2>$
$\left.\left.=\sqrt{4}\left|j=2, m=1>=\left(J_{1-} \oplus J_{2-}\right)\right| j_{1}=1, j_{2}=1 ; m_{1}=1, m_{2}=1\right\rangle=\sqrt{2}|0+>+\sqrt{2}|+0\right\rangle$, i.e.
$\mid j=2, m=1>=\frac{1}{2^{-\frac{1}{2}}}(|0+>+|+0>)$. Now $\left.J_{-}|j=2, m=1>=\sqrt{6}| j=2, m=0\right\rangle=\left(J_{1-} \oplus J_{2-}\right) \times$ $\left[\frac{1}{\frac{1}{2}}(|0+>+|+0>)\right]=|\rightarrow>+2| 00>+\mid+>$. Hence $|j=2, m=0\rangle=\frac{1}{\sigma^{\frac{1}{2}}}(|-1->+2| 00>+\mid+>)$. Al so $J_{-}|j=2, m=0>=\sqrt{6}| j=2, m=-1>=\frac{1}{6} \frac{1}{2}(\sqrt{2}|-0>+2 \sqrt{2}| 0->+2 \sqrt{2}|-0>+\sqrt{2}| 0->)$, therefore $|j=2, m=-1\rangle=\frac{1}{2} \frac{1}{2}(|-0\rangle+\mid 0->)$.

For the $j=1$ states, let us recognize that $|I I\rangle=a|0+>+b|+0\rangle$ with normalization $|a|^{2}+|b|^{2}=1$. Since $\langle 21 \mid 11\rangle=0$ by orthogonality, we have $a+b=0$. Choosing our phase convention to be real, we can write $|11\rangle=\frac{1}{2^{\frac{1}{2}}}(|+0\rangle-\mid 0+>)$. Applying next $J_{-}=J_{1-} \oplus J_{2-}$ to the two sides respectively, we have $|10\rangle=\frac{1}{2^{\frac{1}{2}}}(\mid+\infty-$ $\mid-+>)$ and similarly $\left.|1-1\rangle=\frac{1}{2} \frac{1}{2}(|0->-|-0\rangle\right)$.

Finally we may write $|j=0, m=0\rangle=\alpha|+\gamma+\beta| 00>+\gamma \mid \rightarrow+$, determine α, β, γ by normalization $|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}=1$ and orthogonality to $|j=1, m=0\rangle$ and $|j=2, m=0\rangle$. Choosing α, β, γ to be real we have $\left.|j=0, m=0\rangle=\frac{1}{3^{\frac{1}{2}}}(|+>-| 00\rangle+|\rightarrow\rangle\right)$.
(a) We have $J_{y}=\frac{1}{2 i}\left(J_{+}-J_{-}\right)$, then using (3.5.41) we derive easily

$$
\begin{aligned}
& \text { ive } J_{y}=\frac{1}{2 i}\left(J_{+}\right. \\
& <j m^{\prime}\left|J_{y}\right| j m>=\frac{\gamma}{2 i}\left[\sqrt{j(j+1)-m(m+1)}<j m^{\prime}\left|j, m+1>-\sqrt{j(j+1)-m(m-1)}<j m^{\prime}\right| j, m-1>\right]
\end{aligned}
$$

and therefore for m and $m^{\prime}=+1,0,-1$ and $j=1$ one finds the matrix form for $\left\langle j=1, m^{\prime}\right| J_{y} \mid j=1, m>$ as depicted in (3.5.54).
(b) Unlike the $j=x_{2}$ case, for $j=1$ only $\left[J_{y}^{(j=1)}\right]^{2}$ is independent of 1 and $J_{y}^{(j=1)}$, and in fact we have $\left(J_{y} / h\right)^{2 m+1}=\left(J_{y} / h\right)$ and $\left(J_{y} / h\right)^{2 n}=\left(J_{y} / h\right)^{2}$ where m and n are positive integers. By expansion of the exponential $e^{-i J_{y} B / h}$ in power series

$$
\begin{aligned}
& =1+\left(J_{y} / K\right)^{2}{ }_{n=1}^{\infty} \frac{(+\beta)^{2 n}(-1)^{n}}{(2 n)!}-i\left(J_{y} / K\right)_{m \sum_{0}}^{\infty} \frac{(+\beta)^{2 m+1}(-1)^{m}}{(2 m+1)!} \\
& =1-\left(J_{y} / K\right)^{2}(1-\cos \beta)-1\left(J_{y} / K\right) \sin \beta .
\end{aligned}
$$

(c) Insert the 3×3 matrix form for J_{y} from (a), 1.e. (3.5.54), 1nto the exponential of part (b) above, we find

$$
d^{(j=1)}(\beta)=e^{-i J_{y} \beta / h}=\left(\begin{array}{lll}
\frac{1+\cos \beta}{2} & -\sin \beta / \sqrt{2} & \frac{1-\cos \beta}{2} \\
\sin \beta / \sqrt{2} & \cos \beta & -\sin B / \sqrt{2} \\
\frac{1-\cos \beta}{2} & \sin \beta / \sqrt{2} & \frac{1+\cos \beta}{2}
\end{array}\right)
$$

which is (3.5.57).

