
PHYS 212A: Homework 3

November 11, 2013

Exercise 2

a

Take n̂ along the z-axis and ri = rx. The idea is to reduce the commutator to position and
momentum operators so that we can take advantage of the cannonical quantization conditions.
Plugging in to eq (13) we find,

[n̂ · ~J, x] = [Lz, x] + [Sz, x] = [xpy − ypx, x] = x(xpy − ypx)− (xpy − ypx)x = x[x, py] + y[px, x] (1)

We can now apply the cannonical quantization conditions to find

iα[Jz, x] = y = −iα(i~)y (2)

which implies α = 1/~.

b

Choose n̂ = ĵ, then for infinitesimal rotations we can neglect terms of O(θ2) and have

D†(g)SiD(g) = (1 +
iθ

~
(Jj))Si(1−

iθ

~
(Jj)) = Si +

iθ

~
(SjSi − SiSj) = Si +

iθ

~
[Sj , Si] (3)

Comparing this to the relation
D†(g)SiD(g) = gijSk, (4)

we can see that we must have
[Si, Sj ] = i~εijkSk (5)

c

This derivation follows from the same procedure as used above.

Exercise 4

Note: For an alternative derivation of this result see Sakurai 2.7

Taking the partial derivative with respect to time of the ψ′, we have

∂ψ′

∂t
= e

ie
~cf

∂ψ

∂t
+ e

ie
~cf

ie

hc

∂f

∂t
= e

ie
~cf (

∂ψ

∂t
+
ie

~
(φ− φ′)) (6)
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Rearranging the above expression, we find

(i~
∂

∂t
− eφ′)ψ′ = e

ie
~cf (i~

∂

∂t
− eφ)ψ (7)

Acting on the new wavefunction with the spatial gradient operator leads to the expression

(−i~∇− e

c
A′)ψ′ = e

ie
~cf (−i~∇− e

c
A)ψ (8)

Combining these two results shows that the new wavefunction satisfies

i~
∂

∂t
ψ′ = H ′ψ′ (9)

2.3

a

For this problem the Hamiltonian is simply

H = −~µ · ~B = (gSµB/2)σzB (10)

Recall the eigenstates of the operator ~S · n̂ from problem 1.9. The normalized eigenket is

|ψ〉 = (
1 + cosβ

2
)1/2

(
1

sinβ
cosβ+1

)
(11)

From the Schrodinger equation, we have

−iω
(
A(t)
B(t)

)
= ∂/∂t

(
A(t)
B(t)

)
(12)

Solving the Schrodinger equation using the using the normalized eigenket of ~S · n̂, we find that the
the time evolutoin of the wavefunction is described by

ψ(t) =

(
(1+cosβ

2 )1/2e−iωt

( sinβ
(2(1+cosβ))1/2)

eiωt

)
(13)

If we now change to the sx basis the coefficients we find that the coefficient of |sx; +〉 is

a1 = 1/21/2(
1 + cosβ

2
)1/2e−iωt + 1/21/2(

sinβ

(2(1 + cosβ))1/2)
eiωt (14)

To find the probability of measuring the electron in the |sx; +〉 we calculate

a∗1a1 = 1/2(1 + sinβ cos 2ωt) (15)

b

The expectation value is given by

〈sx〉 = 〈ψ(t)|sx|ψ(t)〉 = (A∗(t), B∗(t))~/2
(

0 1
1 0

)(
A(t)
B(t)

)
= ~/2 sinβ cos 2ωt (16)
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c

As β → 0 the probability of measuring sx = ~/2 → 1/2 and 〈sx〉 = 0. In the other limit
sx = ~/2→ 1/2(1 + cos 2ωt and 〈sx〉 = ~(cos2 ωt− 1/2).

2.11

2.19
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