PHYS 212A: Homework 3

November 11, 2013

Exercise 2

a

Take \hat{n} along the z-axis and $r_{i}=r_{x}$. The idea is to reduce the commutator to position and momentum operators so that we can take advantage of the cannonical quantization conditions. Plugging in to eq (13) we find,

$$
\begin{equation*}
[\hat{n} \cdot \vec{J}, x]=\left[L_{z}, x\right]+\left[S_{z}, x\right]=\left[x p_{y}-y p_{x}, x\right]=x\left(x p_{y}-y p_{x}\right)-\left(x p_{y}-y p_{x}\right) x=x\left[x, p_{y}\right]+y\left[p_{x}, x\right] \tag{1}
\end{equation*}
$$

We can now apply the cannonical quantization conditions to find

$$
\begin{equation*}
i \alpha\left[J_{z}, x\right]=y=-i \alpha(i \hbar) y \tag{2}
\end{equation*}
$$

which implies $\alpha=1 / \hbar$.
b
Choose $\hat{n}=\hat{j}$, then for infinitesimal rotations we can neglect terms of $O\left(\theta^{2}\right)$ and have

$$
\begin{equation*}
D^{\dagger}(g) S_{i} D(g)=\left(1+\frac{i \theta}{\hbar}\left(J_{j}\right)\right) S_{i}\left(1-\frac{i \theta}{\hbar}\left(J_{j}\right)\right)=S_{i}+\frac{i \theta}{\hbar}\left(S_{j} S_{i}-S_{i} S_{j}\right)=S_{i}+\frac{i \theta}{\hbar}\left[S_{j}, S_{i}\right] \tag{3}
\end{equation*}
$$

Comparing this to the relation

$$
\begin{equation*}
D^{\dagger}(g) S_{i} D(g)=g_{i j} S_{k}, \tag{4}
\end{equation*}
$$

we can see that we must have

$$
\begin{equation*}
\left[S_{i}, S_{j}\right]=i \hbar \epsilon_{i j k} S_{k} \tag{5}
\end{equation*}
$$

c

This derivation follows from the same procedure as used above.

Exercise 4

Note: For an alternative derivation of this result see Sakurai 2.7
Taking the partial derivative with respect to time of the ψ^{\prime}, we have

$$
\begin{equation*}
\frac{\partial \psi^{\prime}}{\partial t}=e^{\frac{i e}{\hbar c} f} \frac{\partial \psi}{\partial t}+e^{\frac{i e}{\hbar c}} f \frac{i e}{h c} \frac{\partial f}{\partial t}=e^{\frac{i e}{\hbar c} f}\left(\frac{\partial \psi}{\partial t}+\frac{i e}{\hbar}\left(\phi-\phi^{\prime}\right)\right) \tag{6}
\end{equation*}
$$

Rearranging the above expression, we find

$$
\begin{equation*}
\left(i \hbar \frac{\partial}{\partial t}-e \phi^{\prime}\right) \psi^{\prime}=e^{\frac{i e}{\hbar c} f}\left(i \hbar \frac{\partial}{\partial t}-e \phi\right) \psi \tag{7}
\end{equation*}
$$

Acting on the new wavefunction with the spatial gradient operator leads to the expression

$$
\begin{equation*}
\left(-i \hbar \nabla-\frac{e}{c} A^{\prime}\right) \psi^{\prime}=e^{\frac{i e}{\hbar c} f}\left(-i \hbar \nabla-\frac{e}{c} A\right) \psi \tag{8}
\end{equation*}
$$

Combining these two results shows that the new wavefunction satisfies

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi^{\prime}=H^{\prime} \psi^{\prime} \tag{9}
\end{equation*}
$$

2.3

a

For this problem the Hamiltonian is simply

$$
\begin{equation*}
H=-\vec{\mu} \cdot \vec{B}=\left(g_{S} \mu_{B} / 2\right) \sigma_{z} B \tag{10}
\end{equation*}
$$

Recall the eigenstates of the operator $\vec{S} \cdot \hat{n}$ from problem 1.9. The normalized eigenket is

$$
\begin{equation*}
|\psi\rangle=\left(\frac{1+\cos \beta}{2}\right)^{1 / 2}\binom{1}{\frac{\sin \beta}{\cos \beta+1}} \tag{11}
\end{equation*}
$$

From the Schrodinger equation, we have

$$
\begin{equation*}
-i \omega\binom{A(t)}{B(t)}=\partial / \partial t\binom{A(t)}{B(t)} \tag{12}
\end{equation*}
$$

Solving the Schrodinger equation using the using the normalized eigenket of $\vec{S} \cdot \hat{n}$, we find that the the time evolutoin of the wavefunction is described by

$$
\begin{equation*}
\psi(t)=\binom{\left(\frac{1+\cos \beta}{2}\right)^{1 / 2} e^{-i \omega t}}{\left(\frac{\sin \beta}{\left.(2(1+\cos \beta))^{1 / 2}\right)} e^{i \omega t}\right.} \tag{13}
\end{equation*}
$$

If we now change to the s_{x} basis the coefficients we find that the coefficient of $\left|s_{x} ;+\right\rangle$ is

$$
\begin{equation*}
a_{1}=1 / 2^{1 / 2}\left(\frac{1+\cos \beta}{2}\right)^{1 / 2} e^{-i \omega t}+1 / 2^{1 / 2}\left(\frac{\sin \beta}{\left.(2(1+\cos \beta))^{1 / 2}\right)} e^{i \omega t}\right. \tag{14}
\end{equation*}
$$

To find the probability of measuring the electron in the $\left|s_{x} ;+\right\rangle$ we calculate

$$
\begin{equation*}
a_{1}^{*} a_{1}=1 / 2(1+\sin \beta \cos 2 \omega t) \tag{15}
\end{equation*}
$$

b
The expectation value is given by

$$
\left\langle s_{x}\right\rangle=\langle\psi(t)| s_{x}|\psi(t)\rangle=\left(A^{*}(t), B^{*}(t)\right) \hbar / 2\left(\begin{array}{ll}
0 & 1 \tag{16}\\
1 & 0
\end{array}\right)\binom{A(t)}{B(t)}=\hbar / 2 \sin \beta \cos 2 \omega t
$$

As $\beta \rightarrow 0$ the probability of measuring $s_{x}=\hbar / 2 \rightarrow 1 / 2$ and $\left\langle s_{x}\right\rangle=0$. In the other limit $s_{x}=\hbar / 2 \rightarrow 1 / 2\left(1+\cos 2 \omega t\right.$ and $\left\langle s_{x}\right\rangle=\hbar\left(\cos ^{2} \omega t-1 / 2\right)$.

2.11

For a one-dimensional SHO potential $H=p^{2} / 2 m+\frac{1}{2} m^{2} x^{2}$, hence $\dot{x}=(1 / 1 \sharp)[x, H]=$
 $\ddot{x}+w^{2} \bar{x}=0$, and solution is $x(t)=$ Acoswt + Bsinat. At $t=0, x(0)=A$ while $\dot{x}(t)=$ -A ω sin $\omega t+B \omega c o s \omega t$ leads to $\dot{x}(0)=B \omega$ and thus $p(0)=$ m $\omega \mathrm{B}$. Thus in the Heisenberg picture $x(t)=x(0) \cos \omega t+(p(0) / m \omega)$ sin ωt.

Our state vector $\left|\alpha>=e^{-i p a / h}\right| 0>$ at $t=0$; for $t>0$ we have in the Heisenberg picture $\langle x(t)\rangle=\langle\alpha| x(t)|\alpha\rangle$. We note that

$$
\begin{aligned}
e^{i p(0) a / H_{x}(0) e^{-i p(0) a / K}} & =e^{i p(0) a / h}\left(\left[x(0), e^{-i p(0) a / K}\right]+e^{-i p(0) a / K} x(0)\right) \\
& =x(0)+a,
\end{aligned}
$$

while $e^{i p(0) a / K_{p}(0) e^{-i p(0) a / X}}=p(0)$. Hence

$$
\begin{aligned}
\langle x(t)\rangle=\langle\alpha| x(t)|\alpha\rangle & =\langle 0| e^{i p a / K} x(t) e^{-i p a / M}|0\rangle \\
& =\langle 0| e^{i p(0) a / K}[x(0) \cos \omega t+(p(0) / m \omega) \sin \omega t] e^{-i p a / K}|0\rangle .
\end{aligned}
$$

Since $\langle 0| x(0)|0\rangle=\langle 0| p(0)|0\rangle=0$, we obtain for $\langle x(t)\rangle=$ acosat.
2.19
(a) Take $\left.a\left|\lambda>=\exp \left[-|\lambda|^{2} / 2\right] a \exp \left[\lambda a^{\dagger}\right]\right| 0\right\rangle=\exp \left[-|\lambda|^{2} / 2\right] a \sum_{n=0}^{\infty}\left(\lambda n / n^{\prime}\right)\left(a^{\dagger}\right)^{n}|0\rangle$; but we know that $\left(a^{\dagger}\right)^{k}|n>=\sqrt{(n+1)(n+2) \ldots \ldots(n+k)}|_{n+k>}$ hence $\left(a^{\dagger}\right)^{k}|0\rangle=\sqrt{k!}|k\rangle$ and $a\left(a^{\dagger}\right)^{k}|0>=\sqrt{k!} a| k>=\sqrt{k} \sqrt{k!} \mid k-1>$. Thus $a\left|\lambda>=e^{-|\lambda|}\right|^{2} / 2 \sum_{n=1}^{\infty} \lambda^{n} \frac{\sqrt{n} \sqrt{n!}}{n!}|n-1\rangle=$ $=e^{-|\lambda|^{2} / 2{\underset{n}{i n}}_{\infty}^{\infty}} \lambda^{n+1}(\sqrt{n+1} / \sqrt{(n+1)!}) \mid n>$. But $(n+1)!/(n+1)=n$!, hence

$$
\begin{equation*}
a|\lambda\rangle=e^{-|\lambda|^{2} / 2}{ }_{n}^{\infty} \sum_{0}^{\infty}\left(\lambda^{n+1} / \sqrt{n!}\right)|n\rangle=\lambda e^{-|\lambda|^{2} / 2}{ }_{n}^{\infty} \underline{E}_{0}^{\infty}\left(\lambda^{n} / \sqrt{n!}\right)|n\rangle \tag{1}
\end{equation*}
$$

The r.h.s. of (1) is $\lambda e^{-|\lambda|^{2} / 2} e^{\lambda a^{\dagger}} \mid 0>$ by noting that $e^{\lambda a^{\dagger}}|0\rangle={ }_{n}{ }_{n}^{\infty} \tilde{E}_{0}\left(\lambda a^{\dagger}\right)^{n} / n$! |0> $={ }_{n} \sum_{0}^{\infty} \lambda^{n} \mid n>/ \sqrt{n!}$. Hence with $\left|\lambda>=e^{-|\lambda|^{2} / 2} e^{\lambda a^{\dagger}}\right| 0>$, we have indeed $a|\lambda>=\lambda| \lambda>$ with λ in general a complex number. For normalization we find

$$
\begin{align*}
& <\lambda\left|\lambda>=e^{-|\lambda|^{2}}<0\right| e^{\lambda^{*}} a^{\lambda} e^{\dagger}\left|0>=e^{-|\lambda|}{ }^{2}<0\right| e^{\lambda^{*}} a{ }_{n=0}^{\infty} \tilde{E}_{0} \lambda^{n} \mid n>/ \sqrt{n!} \tag{2}
\end{align*}
$$

but $a^{m}|n>=\sqrt{n(n-1) \ldots \ldots(n-m+1)}| n-m>$, hence (2) contributes by orthonornality of states oniy when $n-m=0$, i.e.

$$
\left.<\lambda|\lambda\rangle=e^{-|\lambda|^{2}}<0\left|\sum_{n=0}^{\infty} \frac{\lambda^{n}\left(\lambda^{*}\right)^{n}}{\sqrt{n!}(n!)} \sqrt{n!}\right| 0\right\rangle=e^{-|\lambda|^{2}} e^{+|\lambda|^{2}}=1
$$

Therefore $|\lambda\rangle$ is a normalized coherent state.
 So $\langle x\rangle=\langle\lambda| x|\lambda\rangle=\sqrt{7 / 2 m \omega}\left(\langle\lambda|\left(a+a^{\dagger}\right)|\lambda\rangle\right)=\sqrt{k / 2 m \omega}\left(\lambda+\lambda^{*}\right)$, and $\langle x\rangle^{2}=(k / 2 m \omega)\left(\lambda^{2}+\right.$ $\left.\lambda^{* 2}+2 \lambda \lambda^{*}\right)=(Y / 2$ mw $)\left(\lambda+\lambda^{\star}\right)^{2}$. Now $x^{2}=x x=(K / 2$ mas $)\left[a^{\dagger}{ }^{2}+a^{2}+a a^{\dagger}+a^{\dagger} a\right]=(K / 2$ mw $)\left[a^{\dagger^{2}}\right.$ $\left.+a^{2}+2 a^{t}+3+1\right]$, bence $\left\langle x^{2}\right\rangle=(h / 2$ mo $)\left[\lambda^{\star 2}+\lambda^{2}+2 \lambda^{\star} \lambda+1\right]=(h / 2$ mas $)\left[\left(\lambda^{*}+\lambda\right)^{2}+1\right]$. Likewise
 Hence $\left\langle(\Delta p)^{2}\right\rangle=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}=h_{\text {anow }} / 2$ and $\left\langle(\Delta x)^{2}\right\rangle=h / 2$ mw and $\left.\left\langle(\Delta x)^{2}\right\rangle<(\Delta p)^{2}\right\rangle=h^{2} / 4$.
 Therefore $|f(n)|^{2}=e^{-|\lambda|^{2}}|\lambda|^{2 n} / n$: and is a Poisson distribution

$$
P\left(\lambda^{\prime}, n\right)=e^{-\lambda^{\prime}} \lambda^{\prime n} / n!\text {, where } \lambda^{\prime}=|\lambda|^{2}
$$

Now $\Gamma(n+1)=n$: hence $|f(n)|^{2}=e^{-|\lambda|^{2}}|\lambda|^{2 n} / \Gamma(n+I)$. The maximum value is obtained by noting that $\ln |f(n)|^{2}=-|\lambda|^{2}+n \ln \left[|\lambda|^{2}\right]-\ln \Gamma(n+1)$, and $\frac{\partial}{\partial n} \ln |f(n)|^{2}$ $=\ln |\lambda|^{2}-\frac{\partial}{\partial n} \ln \Gamma(n+1)=0$. The latter equation defines $n_{\max }$ where for large n, $\frac{\partial}{\partial n} \ln \Gamma(n+1) \approx \ln n$. Hence $n_{\max }=\{\lambda\}^{2}$.
(d) The translation operator $e^{-i p i / y}$ where p is momentum operator and $\&$ just the displacement distance, can be rewritten as

$$
\begin{aligned}
& e^{-i p l / h}=e^{\ell \sqrt{m \omega / 2 K}\left(a^{\dagger}-a\right)}=e^{\ell \sqrt{m \omega / 2 h} a^{\dagger}} e^{-\ell \sqrt{m \omega / 2 h a}} e^{-\frac{1}{2}\left(-\ell^{2}\right)(m \omega / 2 h)\left[a^{\dagger}, a\right]} \\
& =e^{-\frac{1}{2}\left(-\ell^{2}\right)(m \omega / 2 k)\left[a^{\dagger}, a\right]} e^{\ell \sqrt{m \omega / 2 h} a^{\dagger}} e^{-\ell \sqrt{m \omega / 2 h a}}=e^{-\frac{l^{2} m \omega}{4 h}} e^{\ell \sqrt{m \omega / 2 h a^{\dagger}}} e^{-\ell \sqrt{m \omega / 2 h a}}
\end{aligned}
$$

Note $e^{-i \sqrt{m w / 2 h}}|0\rangle=|0\rangle$ because a $|0\rangle=0$. Hence
[We have used here the identity $e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]}$, true for any pain of operators A and B that commute with [A,B], C.f. R. J. Glauber, Phys. Rev. 84, 399 (1951).]

