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January 8, 2011

Problem 1 (Griffiths 5.3) In 1897 J. J. Thomson ”discovered” the electron by measuring the charge-to-mass
ratio of ”cathode rays” (actually, streams of electrons, with charge q and mass m) as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields E and B (mutually perpen-
dicular, and both of them perpendicular to the beam), and adjusted the electric field until he got zero deflection.
What, then, was the speed of the particles (in terms of E and B)?

Solution: (v = E
B .)

Let’s set coordinates as shown in fig.1:
x: the direction of the beam,
y: the direction of electric field E,
z: the direction of magnetic field B.
From Eq. 5.2,

F = q [E+ (v ×B)]

To make sure the charge will not be deflected in the y direction, the electric force FE = qE and the Lorentz force
FB = qv ×B need to be balanced,

F = 0 ⇒ E = −(v ×B).

This gives the desired relation between the speed of the particles and the magnitude of E and B

v =
E

B
.

(b) Then he turned off the electric field, and measured the radius of curvature, R, of the beam, as deflected by
the magnetic field alone. In terms of E,B, and R, what is the charge-to-mass ratio (q/m) of the particles?

Solution: ( q
m = E

B2R .)

Figure 1: Problem 5.3
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When the electric field is turned off, the particle only feels the Lorentz force which is always perpendicular to the
velocity of the particles and gives the central force for the cyclotron motion of the electron. We have

mv2

R
= qvB ⇒ q

m
=

v

BR
.

Using the result of question (a), the charge-to-mass ratio (q/m) of the particles is

q

m
=

E
B

BR
=

E

B2R
.

Problem 2 (Griffiths 5.39)
A current I flows to the right through a rectangular bar of conducting material, in the presence of a uniform

magnetic field B pointing out of the page.
(a) If the moving charges are positive, in which direction are they deflected by the magnetic field? This deflection

results in an accumulation of charge on the upper and lower surfaces of the bar, which in turn produces an electric
force to counteract the magnetic one. Equilibrium occurs when the two exactly cancel. (This phenomenon is known
as the Hall effect.)

Solution: If the moving charges flow to the right, they are deflected down, and the bottom plate acquires a
positive charge.

(b) Find the resulting potential difference (the Hall voltage) between the top and bottom of the bar, in terms
of B, v (the speed of the charges), and the relevant dimensions of the bar.

Solution: qvB = qE ⇒ E = vB ⇒ V = Et = vBt, with the bottom at higher potential.
(c) How would your analysis change if the moving charges were negative? [The Hall effect is the classic way of

determining the sign of the mobile charge carriers in a material.]
Solution: If negative charges flow to the left, they are also deflected down, and the bottom plate acquires a

negative charge. The potential difference is still the same, but this time the top plate is at the higher potential.
Problem 3 (Griffiths 5.43)
Consider the motion of a particle with mass m and electric charge qe in the field of a (hypothetical) stationary

magnetic monopole qm at the origin:

B =
µ0

4π

qm
r2

r̂.

(a) Find the acceleration of qe, expressing your answer in terms of q, qm,m, r (the position of the particle), and
v (its velocity).

Solution:
a =

qe
m
(v ×B) =

µ0

4π

qeqm
mr2

v × r̂.

(b) Show that the speed v = |v| is a constant of the motion.
Solution: Because F ⊥ v, a · v = 0. But a · v = (1/2)(d/dt)(v · v) = (1/2)(d/dt)v2 = vdv/dt. So dv/dt = 0.
(c) Show that the vector quantity

Q ≡ m (r× v)− µ0qeqm
4π

r̂

is a constant of the motion. [Hint: differentiate it with respect to time, and prove—using the equation of motion
from (a)—that the derivative is zero.]

Solution:

d

dt
Q = m (v × v) +m (r× a)− µ0qeqm

4π

d

dt

r

r

=
µ0

4π

qeqm
r2

(r× (v × r̂))− µ0qeqm
4π

(
v

r
− r

r2
dr

dt

)
=

µ0qeqm
4π

[
1

r3
(
r2v − r (r · v)

)
− v

r
+

r

r2
d
√
r · r
dt

]
=

µ0qeqm
4π

[
1

r3
(−r (r · v)) + r

2r3
d (r · r)

dt

]
=

µ0qeqm
4π

[
− 1

r3
r (r · v) + r

r3
(r · v)

]
= 0

2



(d) Choosing spherical coordinates (r, θ, ϕ), with the polar (z) axis along Q,
(i) CalculateQ · ϕ̂, and show that θ is a constant of the motion (so qe moves on the surface of a cone—something

Poincaré first discovered in 1896);
Solution: ẑ · ϕ̂ = r̂ · ϕ̂ = 0.

Q · ϕ̂ = Qẑ · ϕ̂ = 0.

On another hand,

Q · ϕ̂ = m (r× v) · ϕ̂− µ0qeqm
4π

r̂ · ϕ̂

= m (r× v) · ϕ̂

= m
(
(rr̂)× (ṙr̂+ rθ̇θ̂ + r sin θϕ̇ϕ̂)

)
· ϕ̂

= mr2θ̇

⇒ r2θ̇ = 0 true for arbitrary r. Therefore,
θ̇ = 0.

(ii) calculate Q · r̂, and show that the magnitude of Q is

Q =
µ0

4π

∣∣∣qeqm
cos θ

∣∣∣ ;
Solution: Assume Q along the positive direction of (z) axis,

Q cos θ = Q · r̂ = m (r× v) · r̂− µ0qeqm
4π

r̂ · r̂ = −µ0qeqm
4π

.

⇒
Q = −µ0

4π

qeqm
cos θ

.

The magnitude of Q is µ0

4π

∣∣ qeqm
cos θ

∣∣.
(iii) calculate Q · θ̂, show that

dϕ

dt
=

k

r2
,

and determine the constant k.
Solution:

−Q sin θ = Q · θ̂ = m (r× v) · θ̂ − µ0qeqm
4π

r̂ · θ̂ = m (r× v) · θ̂

= m
(
(rr̂)× (r sin θϕ̇ϕ̂)

)
· θ̂ = −mr2 sin θϕ̇.

ϕ̇ =
Q

m

1

r2
= − µ0qeqm

4πm cos θ

1

r2
.

k =
Q

m
= − µ0qeqm

4πm cos θ
.

(e) By expressing v2 in spherical coordinates, obtain the equation for the trajectory, in the form

dr

dϕ
= f (r)

(that is: determine the function f(r)).
Solution: From (d) i) and iii), we have

v2 = ṙ2 +
(
rθ̇
)2

+
(
r sin θϕ̇

)2

= ṙ2 +

(
r sin θ

k

r2

)2

⇒ ṙ2 = v2 − k2 sin2 θ

r2
.
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dr

dϕ
=

ṙ

ϕ̇
=

√
v2 − k2 sin2 θ

r2

k
r2

= r

√(vr
k

)2

− sin2 θ.

(f) Solve this equation for r (ϕ).
Solution: ∫

dr

r

√(
vr
k

)2 − sin2 θ
=

∫
dϕ.

⇒

ϕ− ϕ0 =
1

sin θ

∫
dr

r

√(
vr

k sin θ

)2 − 1

[x≡vr/(k sin θ)] =
1

sin θ

∫
dx

x
√
x2 − 1

=
1

sin θ
sec−1 x

=
1

sin θ
sec−1

( vr

k sin θ

)
.

⇒

r (ϕ) =
k sin θ

v
sec[(ϕ− ϕ0) sin θ]

=
−µ0qeqm tan θ

4πmv
sec[(ϕ− ϕ0) sin θ].
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