Problem 2.36

(a)
$$\sigma_a = -\frac{q_a}{4\pi a^2}$$
; $\sigma_b = -\frac{q_b}{4\pi b^2}$; $\sigma_R = \frac{q_a + q_b}{4\pi R^2}$.

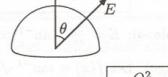
(b)
$$\mathbf{E}_{\text{out}} = \frac{1}{4\pi\epsilon_0} \frac{q_a + q_b}{r^2} \,\hat{\mathbf{r}},$$
 where $\mathbf{r} = \text{vector from center of large sphere.}$

(c)
$$\mathbf{E}_a = \frac{1}{4\pi\epsilon_0} \frac{q_a}{r_a^2} \hat{\mathbf{r}}_a$$
, $\mathbf{E}_b = \frac{1}{4\pi\epsilon_0} \frac{q_b}{r_b^2} \hat{\mathbf{r}}_b$, where \mathbf{r}_a (\mathbf{r}_b) is the vector from center of cavity a (b).

- (d) Zero.
- (e) σ_R changes (but not σ_a or σ_b); $\mathbf{E}_{\text{outside}}$ changes (but not \mathbf{E}_a or \mathbf{E}_b); force on q_a and q_b still zero.

Problem 2.38

Inside,
$$\mathbf{E} = 0$$
; outside, $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{\mathbf{r}}$; so $\mathbf{E}_{\text{ave}} = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \frac{Q}{R^2} \hat{\mathbf{r}}$; $f_z = \sigma(E_{\text{ave}})_z$; $\sigma = \frac{Q}{4\pi R^2}$. $F_z = \int f_z da = \int \left(\frac{Q}{4\pi R^2}\right) \frac{1}{2} \left(\frac{1}{4\pi\epsilon_0} \frac{Q}{R^2}\right) \cos\theta R^2 \sin\theta d\theta d\phi$



$$= \frac{1}{2\epsilon_0} \left(\frac{Q}{4\pi R}\right)^2 2\pi \int_0^{\pi/2} \sin\theta \cos\theta \, d\theta = \frac{1}{\pi\epsilon_0} \left(\frac{Q}{4R}\right)^2 \left(\frac{1}{2} \sin^2\theta\right) \Big|_0^{\pi/2} = \frac{1}{2\pi\epsilon_0} \left(\frac{Q}{4R}\right)^2 = \frac{Q^2}{32\pi R^2 \epsilon_0}.$$

Problem 2.40

(a)
$$W = (\text{force}) \times (\text{distance}) = (\text{pressure}) \times (\text{area}) \times (\text{distance}) = \boxed{\frac{\epsilon_0}{2} E^2 A \epsilon}.$$

(b) $W = (\text{energy per unit volume}) \times (\text{decrease in volume}) = \left(\epsilon_0 \frac{E^2}{2}\right) (A\epsilon)$. Same as (a), confirming that the energy lost is equal to the work done.

Problem 3.1

The argument is exactly the same as in Sect. 3.1.4, except that since z < R, $\sqrt{z^2 + R^2 - 2zR} = (R - z)$, instead of (z - R). Hence $V_{\text{ave}} = \frac{q}{4\pi\epsilon_0} \frac{1}{2zR} \left[(z + R) - (R - z) \right] = \boxed{\frac{1}{4\pi\epsilon_0} \frac{q}{R}}$. If there is more than one charge inside the sphere, the average potential due to interior charges is $\frac{1}{4\pi\epsilon_0} \frac{Q_{\text{enc}}}{R}$, and the average due to exterior charges is V_{center} , so $V_{\text{ave}} = V_{\text{center}} + \frac{Q_{\text{enc}}}{4\pi\epsilon_0 R}$.

Problem 3.2

A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is qV. But we know that Laplace's equation allows no local minima for V. What looks like a minimum, in the figure, must in fact be a saddle point, and the box "leaks" through the center of each face.