$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
-1 & 2 & 0 \\
-1 & 0 & 3
\end{array}\right|=6 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}
$$

This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its length:

$$
|\mathbf{A} \times \mathbf{B}|=\sqrt{36+9+4}=7 . \quad \hat{\mathbf{n}}=\frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|}=\frac{6}{7} \hat{\mathbf{x}}+\frac{3}{7} \hat{\mathbf{y}}+\frac{2}{7} \hat{\mathbf{z}} .
$$

Problem 1.5

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
A_{x} & A_{y} & A_{z} \\
\left(B_{y} C_{z}-B_{z} C_{y}\right) & \left(B_{z} C_{x}-B_{x} C_{z}\right) & \left(B_{x} C_{y}-B_{y} C_{x}\right)
\end{array}\right| \\
& =\hat{\mathbf{x}}\left[A_{y}\left(B_{x} C_{y}-B_{y} C_{x}\right)-A_{z}\left(B_{z} C_{x}-B_{x} C_{z}\right)\right]+\hat{\mathbf{y}}()+\hat{\mathbf{z}}() \\
& \text { (I'll just check the x-component; the others go the same way.) } \\
& =\hat{\mathbf{x}}\left(A_{y} B_{x} C_{y}-A_{y} B_{y} C_{x}-A_{z} B_{z} C_{x}+A_{z} B_{x} C_{z}\right)+\hat{\mathbf{y}}()+\hat{\mathbf{z}}() \text {. } \\
& \mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})=\left[B_{x}\left(A_{x} C_{x}+A_{y} C_{y}+A_{z} C_{z}\right)-C_{x}\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right)\right] \hat{\mathbf{x}}+() \hat{\mathbf{y}}+() \hat{\mathbf{z}} \\
& =\hat{\mathbf{x}}\left(A_{y} B_{x} C_{y}+A_{z} B_{x} C_{z}-A_{y} B_{y} C_{x}-A_{z} B_{z} C_{x}\right)+\hat{\mathbf{y}}()+\hat{\mathbf{z}}() \text {. They agree. }
\end{aligned}
$$

Problem 1.6

$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})+\mathbf{C}(\mathbf{A} \cdot \mathbf{B})-\mathbf{A}(\mathbf{C} \cdot \mathbf{B})+\mathbf{A}(\mathbf{B} \cdot \mathbf{C})-\mathbf{B}(\mathbf{C} \cdot \mathbf{A})=0$.
So: $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})-(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=-\mathbf{B} \times(\mathbf{C} \times \mathbf{A})=\mathbf{A}(\mathbf{B} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$.
If this is zero, then either \mathbf{A} is parallel to \mathbf{C} (including the case in which they point in opposite directions, or one is zero), or else $\mathbf{B} \cdot \mathbf{C}=\mathbf{B} \cdot \mathbf{A}=0$, in which case \mathbf{B} is perpendicular to \mathbf{A} and \mathbf{C} (including the case $\mathbf{B}=0$).
Conclusion: $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \Longleftrightarrow$ either \mathbf{A} is parallel to \mathbf{C}, or \mathbf{B} is perpendicular to \mathbf{A} and \mathbf{C}.
Problem 1.7
$n=(4 \hat{\mathbf{x}}+6 \hat{\mathbf{y}}+8 \hat{\mathbf{z}})-(2 \hat{\mathbf{x}}+8 \hat{\mathbf{y}}+7 \hat{\mathbf{z}})=2 \hat{\mathbf{x}}-2 \hat{\mathbf{y}}+\hat{\mathbf{z}}$
$\imath=\sqrt{4+4+1}=3$
$\hat{\imath}=\frac{r}{r}=\frac{2}{3} \hat{\mathbf{x}}-\frac{2}{3} \hat{\mathbf{y}}+\frac{1}{3} \hat{\mathbf{z}}$

Problem 1.8

(a) $\bar{A}_{y} \bar{B}_{y}+\bar{A}_{z} \bar{B}_{z}=\left(\cos \phi A_{y}+\sin \phi A_{z}\right)\left(\cos \phi B_{y}+\sin \phi B_{z}\right)+\left(-\sin \phi A_{y}+\cos \phi A_{z}\right)\left(-\sin \phi B_{y}+\cos \phi B_{z}\right)$ $=\cos ^{2} \phi A_{y} B_{y}+\sin \phi \cos \phi\left(A_{y} B_{z}+A_{z} B_{y}\right)+\sin ^{2} \phi A_{z} B_{z}+\sin ^{2} \phi A_{y} B_{y}-\sin \phi \cos \phi\left(A_{y} B_{z}+A_{z} B_{y}\right)+$ $\cos ^{2} \phi A_{z} B_{z}$

$$
=\left(\cos ^{2} \phi+\sin ^{2} \phi\right) A_{y} B_{y}+\left(\sin ^{2} \phi+\cos ^{2} \phi\right) A_{z} B_{z}=A_{y} B_{y}+A_{z} B_{z}
$$

(b) $\left(\bar{A}_{x}\right)^{2}+\left(\bar{A}_{y}\right)^{2}+\left(\bar{A}_{z}\right)^{2}=\Sigma_{i=1}^{3} \bar{A}_{i} \bar{A}_{i}=\Sigma_{i=1}^{3}\left(\Sigma_{j=1}^{3} R_{i j} A_{j}\right)\left(\Sigma_{k=1}^{3} R_{i k} A_{k}\right)=\Sigma_{j, k}\left(\Sigma_{i} R_{i j} R_{i k}\right) A_{j} A_{k}$.

This equals $A_{x}^{2}+A_{y}^{2}+A_{z}^{2}$ provided $\Sigma_{i=1}^{3} R_{i j} R_{i k}=\left\{\begin{array}{lll}1 & \text { if } & j=k \\ 0 & \text { if } & j \neq k\end{array}\right\}$
Moreover, if R is to preserve lengths for all vectors \mathbf{A}, then this condition is not only sufficient but also necessary. For suppose $\mathbf{A}=(1,0,0)$. Then $\Sigma_{j, k}\left(\Sigma_{i} R_{i j} R_{i k}\right) A_{j} A_{k}=\Sigma_{i} R_{i 1} R_{i 1}$, and this must equal 1 (since we want $\bar{A}_{x}^{2}+\bar{A}_{y}^{2}+\bar{A}_{z}^{2}=1$). Likewise, $\Sigma_{i=1}^{3} R_{i 2} R_{i 2}=\Sigma_{i=1}^{3} R_{i 3} R_{i 3}=1$. To check the case $j \neq k$, choose $\mathbf{A}=(1,1,0)$. Then we want $2=\Sigma_{j, k}\left(\Sigma_{i} R_{i j} R_{i k}\right) A_{j} A_{k}=\Sigma_{i} R_{i 1} R_{i 1}+\Sigma_{i} R_{i 2} R_{i 2}+\Sigma_{i} R_{i 1} R_{i 2}+\Sigma_{i} R_{i 2} R_{i 1}$. But we already know that the first two sums are both 1 ; the third and fourth are equal, so $\Sigma_{i} R_{i 1} R_{i 2}=\Sigma_{i} R_{i 2} R_{i 1}=0$, and so on for other unequal combinations of j, k. \checkmark In matrix notation: $\tilde{R} R=1$, where \tilde{R} is the transpose of R.

Problem 1.9

Looking down the axis:

A 120° rotation carries the z axis into the $y(=\bar{z})$ axis, y into $x(=\bar{y})$, and x into $z(=\bar{x})$. So $\bar{A}_{x}=A_{z}$, $\bar{A}_{y}=A_{x}, \bar{A}_{z}=A_{y}$.

$$
R=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Problem 1.10

(a) No change. $\left(\bar{A}_{x}=A_{x}, \bar{A}_{y}=A_{y}, \bar{A}_{z}=A_{z}\right)$
(b) $\mathbf{A} \longrightarrow-\mathbf{A}$, in the sense $\left(\bar{A}_{x}=-A_{x}, \bar{A}_{y}=-A_{y}, \bar{A}_{z}=-A_{z}\right)$
(c) $(\mathbf{A} \times \mathbf{B}) \longrightarrow(-\mathbf{A}) \times(-\mathbf{B})=(\mathbf{A} \times \mathbf{B})$. That is, if $\mathbf{C}=\mathbf{A} \times \mathbf{B}, \mathbf{C} \longrightarrow \mathbf{C}$. No minus sign, in contrast to behavior of an "ordinary" vector, as given by (b). If \mathbf{A} and \mathbf{B} are pseudovectors, then $(\mathbf{A} \times \mathbf{B}) \longrightarrow(\mathbf{A}) \times(\mathbf{B})=$ $(\mathbf{A} \times \mathbf{B})$. So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector and a pseudovector, one changes sign, the other doesn't, and therefore the cross-product is itself a vector. Angular momentum $(\mathbf{L}=\mathbf{r} \times \mathbf{p})$ and torque $(\mathbf{N}=\mathbf{r} \times \mathbf{F})$ are pseudovectors.
(d) $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C}) \longrightarrow(-\mathbf{A}) \cdot((-\mathbf{B}) \times(-\mathbf{C}))=-\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$. So, if $a=\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$, then $a \longrightarrow-a$; a pseudoscalar changes sign under inversion of coordinates.

Problem 1.11

(a) $\boldsymbol{\nabla} f=2 x \hat{\mathbf{x}}+3 y^{2} \hat{\mathbf{y}}+4 z^{3} \hat{\mathbf{z}}$
(b) $\nabla f=2 x y^{3} z^{4} \hat{\mathbf{x}}+3 x^{2} y^{2} z^{4} \hat{\mathbf{y}}+4 x^{2} y^{3} z^{3} \hat{\mathbf{z}}$
(c) $\boldsymbol{\nabla} f=e^{x} \sin y \ln z \hat{\mathbf{x}}+e^{x} \cos y \ln z \hat{\mathbf{y}}+e^{x} \sin y(1 / z) \hat{\mathbf{z}}$

Problem 1.12

(a) $\nabla h=10[(2 y-6 x-18) \hat{\mathbf{x}}+(2 x-8 y+28) \hat{\mathbf{y}}]$. $\boldsymbol{\nabla} h=0$ at summit, so
$\left.\begin{array}{l}2 y-6 x-18=0 \\ 2 x-8 y+28=0 \Longrightarrow 6 x-24 y+84=0\end{array}\right\} 2 y-18-24 y+84=0$.
$22 y=66 \Longrightarrow y=3 \Longrightarrow 2 x-24+28=0 \Longrightarrow x=-2$.
Top is 3 miles north, 2 miles west, of South Hadley.
(b) Putting in $x=-2, y=3$:
$h=10(-12-12-36+36+84+12)=720 \mathrm{ft}$.
(c) Putting in $x=1, y=1: \nabla h=10[(2-6-18) \hat{\mathbf{x}}+(2-8+28) \hat{\mathbf{y}}]=10(-22 \hat{\mathbf{x}}+22 \hat{\mathbf{y}})=220(-\hat{\mathbf{x}}+\hat{\mathbf{y}})$.
$|\nabla h|=220 \sqrt{2} \approx 311 \mathrm{ft} / \mathrm{mile}$; direction: northwest.

