Quaternionic states of matter from synthetic gauge fields

Congjun Wu
University of California, San Diego

Collaborators: Yi Li (UCSD→ Princeton), X. F. Zhou (USTC, Hefei)

Q-BEC with Hopf invariant 3D Q-analytic Landau level
Ref.
1) Y. Li, X. F. Zhou, C. Wu, arxiv1205.2162.

Other related work
3) Y. Li, K. Intrilligator, Y. Yu, C. Wu, PRB 85, 85132(2012).

Acknowledgement

Helpful discussions with Jorge Hirsch, Kazuki Hasebe, T. L. Ho, Jiang-ping Hu, Nai Phuan Ong, Cenke Xu, Kun Yang, Yue Yu, S. C. Zhang, Fei Zhou

Support from NSF-DMR, AFOSR.
Outline

• **Real numbers → complex numbers → quaternions (Q).**

• **Bosons:** real (positive) BEC → complex BEC → Q-BEC

 unconventional symm. beyond the “no-node” theorem.

 p-wave BEC, and topological spin textures

• **Fermions:** Q-analytic Landau levels in 3D.

 harmonic potential + spin-orbit coupling

 Cauchy-Riemann-Fueter condition.

• **Complex quaternions:** 3D Landau levels of Dirac fermions.
History: how did people accept “i”?

• Not because of the “ridiculous” Eq. \(x^2 = -1 \), but solving the cubic Eq (Cardano formula).

\[
x^3 + px + q = 0 \quad \rightarrow \quad x_1 = c_1 + c_2, \quad x_{2,3} = c_1e^{\pm\frac{i\pi}{3}} + c_2e^{\mp\frac{i\pi}{3}}
\]

\[
c_{1,2} = \sqrt[3]{-\frac{q}{2} \pm \sqrt{\Delta}} \quad \text{discriminant:} \quad \Delta = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3
\]

• Start up with real coefficients, and end up with three real roots, but no way to avoid “i”.

\[
x^3 - 3x = 0 \quad \rightarrow \quad x_1 = 0, \quad x_{2,3} = \pm\sqrt{3}
\]

\[
\Delta = -1, \quad \sqrt{\Delta} = \sqrt{-1}!!!
\]
The beauty of complex and elegance

- 2D rotation: Gauss plane.

- Euler formula: \(e^{i\pi} = -1 \)

- Complex analysis based on complex analyticity:
 \[
 \frac{\partial g}{\partial x} + i \frac{\partial g}{\partial y} = 0
 \]
 \[
 \frac{1}{2\pi i} \int \frac{1}{z - z_0} \, dz \quad g(z) = g(z_0)
 \]

- Applications: algebra fundamental theorem; Riemann hypothesis – distributions of prime numbers.

Quantum mechanics: the most important quantity in Schrödinger Eq is not hbar but “i”.

\[
i\hbar \frac{\partial}{\partial t} \psi = H \psi
\]
Quaternion: a further extension

- Three imaginary units \(i, j, k\).

\[
q = x + yi + zj + uk \quad i^2 = j^2 = k^2 = -1
\]

- Division algebra: \(ab \neq 0 \iff a \neq 0, b \neq 0\)

- Hamilton: Non-commutative division algebra (3D rotation is non-commutative).

\[
ij = -ji = k; \quad jk = -kj = i; \quad ki = -ik = j
\]

- Q-analyticity (Cauchy- Futer integral)

\[
\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} + j \frac{\partial f}{\partial z} + k \frac{\partial f}{\partial u} = 0 \quad \Rightarrow \quad \frac{1}{2\pi^2} \iiint \frac{1}{|q - q_0|^2} \frac{1}{(q - q_0)} Dq \quad f(q) = f(q_0)
\]
Quat ernion plaque: Hamilton 10/16/1843

Brougham bridge, Dublin

\[i^2 = j^2 = k^2 = ijk = -1 \]

Here as he walked by on the 16th of October 1843, Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication:

\[i^2 = j^2 = k^2 = ijk = -1 \]

& cut it on a stone of this bridge.
3D rotation as 1st Hopf map

- Rotation axis $\hat{\Omega}$, rotation angle: γ.

- $\hat{\Omega}$: imaginary quaternion unit: $\omega(\hat{\Omega}) = i \sin \theta \cos \phi + j \sin \theta \sin \phi + k \cos \theta$

3D rotation: unit quaternion q: $q = \cos \frac{\gamma}{2} + \omega(\hat{\Omega}) \sin \frac{\gamma}{2} \in S^3$

2D rotation: unit complex phase

- 3D vector $r \rightarrow$ imaginary quaternion. $\vec{r} \Rightarrow xi + yj + zk$

- 3D rotation and Hopf map.

\[\vec{r} = \hat{z} = k \]
\[\vec{r}' = qkq^{-1} \]

1st Hopf map

$q \in S^3$

$qkq^{-1} \in S^2$
• Real numbers \rightarrow complex numbers \rightarrow quaternions (Q).

• **Bosons:** real (positive) BEC \rightarrow complex BEC \rightarrow Q-BEC unconventional symm. beyond the “no-node” theorem.

 p-wave BEC, and topological spin textures

• **Fermions:** Q-analytic Landau levels in 3D.

 harmonic potential+ spin-orbit coupling
 Cauchy-Riemann-Fueter condition.

• **Complex quaternions:** 3D Landau levels of Dirac fermions.
Conventional BECs based on positive numbers

• “No-node” theorem: many-body ground state wavefunctions of bosons in the coordinate representation are positive-definite.

\[\psi(r_1, r_2, \ldots r_n) \geq 0 \]

• A ground state property valid under general conditions (no rotation).

\[H = \sum_{i=1}^{N} -\frac{\hbar^2 \nabla_i^2}{2M} + \sum_{i=1}^{N} V_{ex}(\vec{r}_i) + \sum_{i<j}^{N} V_{int}(\vec{r}_i - \vec{r}_j) \]

• No-go: Conventional BEC CANNOT break time-reversal symm spontaneously.

R. P. Feynman
An intuitive proof

\[\psi(r_1, r_2, \ldots r_n) \quad |\psi(r_1, r_2, \ldots r_n)| \quad \psi(r_1, r_2, \ldots r_n) > 0 \]

\[\langle \psi | H | \psi \rangle = \int dr_1 \ldots dr_n \frac{\hbar^2}{2m} \sum_{i=1}^{n} |\nabla_i \psi(r_1, \ldots r_n)|^2 + |\psi(r_1, \ldots r_n)|^2 \sum_{i=1}^{n} U_{\text{ex}}(r_i) \]

+ \[|\psi(r_1, \ldots r_n)|^2 \sum_{i<j} V_{\text{int}}(r_i - r_j) \]

• More formally and rigorously, c.f. Perron-Frobenius theorem.
Conventional BEC (invariant under rotations, s-wave-like)

- “No-node” theorem forbids unconventional symmetries, say, p, d, etc.

- Cf. conventional superconductivity: the pair WF belongs to the trivial (s-wave) representation of the rotation group.

\[\Delta(r_1 - r_2) = \int d\vec{k} e^{i\vec{k} \cdot (\vec{r}_1 - \vec{r}_2)} \Delta(\vec{k}) \]

- High T_c d-wave superconductivity tested by phase sensitive Josephson junction experiment by Van Harlingen et al.
Unconventional BEC: beyond “no-node”

• The condensate wavefunction $\Psi(r)$ belongs to a non-trivial (non-s-wave) representation of the lattice point group.

• No-node theorem does NOT apply to excited states.

• Example: the p-orbital bands can have degenerate band minima.

Interaction selects complex $p+ip$ UBEC:

$$\Psi(\vec{r}) = \Psi_{K_1}(\vec{r}) + i\Psi_{K_2}(\vec{r})$$

• Solid state experiments: d-wave BEC in exiton-polariton lattices (Kim, Yamamoto, Wu)

• Real numbers \rightarrow complex numbers \rightarrow quaternions (Q).

• Bosons: real (positive) BEC \rightarrow complex BEC \rightarrow Q-BEC unconventional symm. beyond the “no-node” theorem. p-wave BEC, and topological spin textures

• Fermions: Q-analytic Landau levels in 3D.

 harmonic potential+ spin-orbit coupling Cauchy-Riemann-Fueter condition.

• Complex quaternions: 3D Landau levels of Dirac fermions.
Two-component spinor \rightarrow quaternion

• A quaternion can also be understood as a pair of complex numbers just like complex number is a pair of real numbers.

• Spinor wavefunction \rightarrow quaternion wavefunction; Spin density distribution \rightarrow 1st Hopf-mapping.

\[
\psi(r, \hat{\Omega}) = \begin{pmatrix} \psi_\uparrow \\ \psi_\downarrow \end{pmatrix}
\]

\[
\xi(r, \hat{\Omega}) = \text{Re} \psi_\uparrow + \text{Im} \psi_\downarrow i - \text{Re} \psi_\downarrow j + \text{Im} \psi_\uparrow k
\]

\[
\vec{S}(r, \hat{\Omega}) = \psi^+(r, \hat{\Omega}) \frac{\vec{\sigma}}{2} \psi^+(r, \hat{\Omega})
\]

\[
S_x i + S_y j + S_z k = \frac{1}{2} \xi k \xi
\]
The 2D version: BEC with Rashba SO coupling

- Solid state SO coupled boson system: excitons in semiconductors.

- Free space: Spin spiral stripe for density-only interactions. (“order from disorder” mechanism beyond G-P level.)

 Trap: Prediction of spontaneous generation of “baby” skyrmion spin-texture and half-quantum vortex.

- Spin-textures in SO coupled exciton condensates observed from photoluminescence by L. Butov.
3D SO coupling in hyperfine states of 40K atoms

$$H^{3D} = -\frac{\hbar^2 \nabla^2}{2m} + \frac{1}{2} m \omega^2 r^2 - \lambda (-i\hbar \nabla \cdot \sigma)$$

Artificial SO coupling from light-atom interaction

Yi Li, Xiangfa Zhou, C. Wu, PRB 85, 125122 (2012).
Spherical rotator subjected to a fundamental monople

\[H = -\frac{\hbar^2 \nabla^2}{2m} + \lambda (-i\hbar \bar{\nabla} \cdot \vec{\sigma}_{\alpha\beta}) + \frac{1}{2} m \omega_T^2 r^2 \]

- Low energy SO sphere with radius \(k_{so} \).
 Dimensionless SO coupling strength

\[\hbar k_{so} = m\lambda, \quad l_T = \sqrt{\frac{\hbar}{m\omega}}, \quad \alpha = k_{so} l_T \]

- Momentum space:

\[V_{ex}(r) = \frac{1}{2} M \omega_T^2 r^2 \rightarrow \frac{1}{2} M \omega_T^2 \left(i\nabla_k - A(k) \right)^2, \]

\[\iiint d^2k \nabla \times A_k = 2\pi \]

- Angular momentum quantization change to half-integer values.
TR invariant parity breaking 3D Landau-levels

• Angular dispersion suppressed by strong SO coupling forming nearly flat Landau levels.

\[E_{n_r,j_z} \approx \frac{j(j + 1)}{2\alpha^2} \hbar \omega_r + (n_r + \frac{1}{2}) \hbar \omega_r \]

\[n_r = 1 \]
\[n_r = 0 \]

• LLL wavefunctions through SO coupled harmonics:

\[
\psi_{3D,jj_z}(\vec{r}) = e^{-\frac{\alpha^2}{2l_r^2}} \left\{ j_l(k_0 r) Y_{+,j,l,j_z}(\Omega_r) + i j_{l+1}(k_0 r) Y_{-,j,l+1,j_z}(\Omega_r) \right\},
\]

Yi Li, Xiangfa Zhou, C. Wu, PRB 85, 125122 (2012); Gosh et al, PRA 84, 053629 (2011).
The single-particle ground state (mixed s and p-partial wave)

\[\psi_{j=j_z=\frac{1}{2}}(r, \hat{\Omega}) = e^{-\frac{r^2}{2l^2}} (j_0(k_{so} r) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + ij_1(k_{so} r) \begin{pmatrix} \cos \theta \\ \sin \theta e^{i\phi} \end{pmatrix}) \]

- Quaternion representation:

\[\xi(r, \hat{\Omega}) = \text{Re} \psi_\uparrow + \text{Im} \psi_\downarrow i - \text{Re} \psi_\downarrow j + \text{Im} \psi_\uparrow k \]

\[= | \xi(r) | e^{\omega(\hat{\Omega})\gamma(r)} \]

\[= | \xi(r) | (\cos \gamma + \omega(\hat{\Omega}) \sin \gamma) \]

- Imaginary unit \(\leftrightarrow \) solid angle direction

\[\omega(\hat{\Omega}) = i \sin \theta \cos \phi + j \sin \theta \sin \phi + k \cos \theta \]
BEC WF as a quaternionic defect

- Condensation WF based on single-particle GS.

\[\xi(r, \Omega) = |\xi(r)| (\cos \gamma + \omega(\Omega) \sin \gamma) \]

\[\tan \gamma(r) = \frac{g}{f} \]

\[\omega(\Omega) = i \sin \theta \cos \phi + j \sin \theta \sin \phi + k \cos \theta \]

- Along any \(\Omega \), \(e^{\omega(\Omega) \gamma(r)} \) winds in \((1, \omega(\Omega))-plane\) as \(r \) increases. \(\gamma(r_n) = n\pi \) at zero points of \(g(r) \).

- Mapping from 3D real space to quaternionic phase space \(S^3 \) – 3D skrymion.
Quaternionic defect with non-zero Hopf invariant

- 3D spin distribution: the horizontal cross-section \(z=0 \) is a baby (2D) skrymion.

\[
\begin{align*}
\begin{bmatrix} S_x(r) \\ S_y(r) \end{bmatrix} &= \xi^2(r) \sin \gamma \sin \theta \begin{bmatrix} \cos \phi, -\sin \phi \\ \sin \phi, \cos \phi \end{bmatrix} \begin{bmatrix} \sin \gamma \cos \theta \\ \cos \gamma \end{bmatrix} \\
S_z(r) &= \xi^2(r) (\cos^2 \gamma + \sin^2 \gamma \cos 2\theta)
\end{align*}
\]

\[\pi_3(S^2) = Z\]

xy-plane \(z/l_r = 0.5 \)

\[\alpha = 1.5, \ c = 1, \ \text{and} \ \beta = 30,\]
See the linking number

• The trajectory of spin with the same orientation form a closed loop (in our case, the loop may be cut by the boundary).

• For \(\vec{S} /\!/ \hat{z} \), \(\theta = 0, \pi \); reduced to a straight line of the \(z \)-axis

For \(\vec{S} /\!/ -\hat{z} \), \(\theta = \frac{\pi}{2}, \gamma = \frac{\pi}{2} \); a circle in the equatorial plane

\[
S_z(r) = \xi^2(r) (\cos^2 \gamma + \sin^2 \gamma \cos 2\theta)
\]

• For any two loops, they link each other.
3D quaternion analogy to 2D Abrikosov vortex lattice

- As SO coupling goes strong, the condensate WF mixes different single particle states within the same LL driven by interaction.
- Rotational symmetry is broken forming texture lattices.

\[\alpha = 15, \beta = 0.8, c = 1 \]
• Real numbers \rightarrow complex numbers \rightarrow quaternions.

• **Positive BEC** \rightarrow **complex BEC** \rightarrow **quaternionic BEC**

 go beyond the “no-node” theorem

 p-wave BEC, and topological spin textures

• Quaternionic analytic Landau levels in 3D.

 harmonic potential + spin-orbit coupling
 Cauchy-Riemann-Fueter condition.

• Complex quaternions: 3D Landau levels of Dirac fermions.
3D quaternionic (SU(2)) Landau levels

2D LLs (continuum, flat spectra and complex analyticity); IQHE & FQHE.

QM: (Final exam for grad students.) harmonic oscillator + spin-orbit coupling (symm-like gauge) degenerate helical modes; math: quaternionic analyticity

3D TI (lattice) Frac-TI (3D Laughlin WF)?

Exp. realization: cold atom; semiconductors?

Dirac fermion: flat band of zero modes from non-minimal coupling; novel anomaly?

H^{3D \text{Dirac LL}}_{\text{symm}} = \frac{\hbar \omega}{2} \begin{pmatrix} 0 & i\vec{\sigma} \cdot \vec{a}^+ \\ -i\vec{\sigma} \cdot \vec{a} & 0 \end{pmatrix}
Return to Landau levels (a review of 2D)

• **Simple, explicit and elegant.**

Symmetric gauge: analytic functions of complex variables (chiral).

\[
\psi_{LLL}^{\text{sym}} = z^m e^{-|z|^2/(2l_B^2)}, \quad z = x + iy, \quad m \geq 0.
\]

Landau gauge: 1D harmonic oscillators with center-shift (k_x dep.) spatial separation of chiral modes.

\[
\psi_{LLL}^{\text{Landau}} = e^{-(y - y_0(k_x))^2/(2l_B^2)} e^{ik_x x}
\]

\[
y_0 = l_B^2 k_x
\]
Comparison of symm gauge LLs in 2D and 3D

• 1D harmonic levels: real polynomials.

• 2D LLs: complex analytic polynomials.

\[\psi_{LLL}^{\text{sym}} = z^m e^{-|z|^2/(2l_h^2)} , \quad z = x + iy , \quad m \geq 0. \]

• 3D LLs: SU(2) group space \(\rightarrow \) quaternionic analytic polynomials.

\[\psi_{j_+, \text{ high}}^{LLL} (r, \Omega) = [(\hat{e}_1 + i\hat{e}_2) \cdot \vec{r}]^l \otimes \chi_{\hat{e}_3} e^{-r^2/2l_g^2} \]
Conclusions

• Quaternion is a beautiful and useful concept.

• The 3D spin-orbit coupled BEC exhibit the 3D structure of quaternionic defects with non-zero Hopf invariants.

• Landau levels are generalized to 3D with the full rotational symmetry and TR symmetry.

• Quaternionic analyticity is a useful criterion to select good 3D wavefunctions for non-trivial topology.

Proposal: Quantum Mechanics class instruction (Final or qual exams).
Landau-level (LL) type single particle quantization (2D)

- The Rashba ring in momentum space with the radius k_{so}. Dimensionless SO coupling strength α.

$$l_T = \sqrt{\frac{\hbar}{m \omega_T}}, \quad \alpha = k_{so} l_T \gg 1$$

- Ring rotor in momentum space subjected to a π–flux \rightarrow half integer quantized angular momentum.

$$V_{ex}(r) = \frac{1}{2} M \omega_T^2 r^2 \rightarrow \frac{1}{2} M \omega_T^2 \left(i \nabla_k - A(k) \right)^2, \quad \oint A(k) dk = \pi$$

- Angular dispersion is suppressed by strong SO coupling forming nearly flat Landau levels.

$$E_{n_r,j_z} = n_r \hbar \omega_T + \frac{j_z^2}{2\alpha^2} \hbar \omega_T + \text{const}$$

SO coupled bosons in trap: spin textures and half-quantum vortex

- Weak SO coupling. Condensate WFs:

\[|\psi_{1/2} \rangle = \begin{pmatrix} f(r) \\ g(r)e^{i\phi} \end{pmatrix}, \quad j_z = L + S = 1/2 \]

- Friedel-like oscillation of \(|f(r)|^2 \) (up), and \(|g(r)|^2 \) (down) at the pitch value of \(k_{so} \).

- The relative phase shift \(\frac{\pi}{2} \) between \(f(r) \) and \(g(r) \).

- 2D (baby) skyrmion type spin texture formation and half-quantum vortex.

\[\langle S_z \rangle = |f|^2 - |g|^2, \quad \langle S_x \rangle = fg \cos \phi, \quad \langle S_y \rangle = fg \sin \phi \]
Spin lines with non-zero Hopf invariant

- 3D spin configuration with non-trivial Hopf-invariant; twisted baby (2D) skrymion as moving along z-axis.