Novel Sp(2N) and SU(2N) quantum magnetism and Mott physics – large spins are different

Congjun Wu
Department of Physics, University of California, San Diego

Current work:

Earlier work:
2. C. Wu, Phys. Rev. Lett. 95, 266404 (2005),
Current collaborators

Shenglong Xu (UCSD)
Da Wang (UCSD → Nanjing Univ.)
Yi Li (UCSD → Princeton)
Zi Cai (UCSD → Innsbruck)
Hsiang-hsuan Hung (UCSD → UIUC → UT Austin)
Yu Wang, Zhi-Chao Zhou (Wuhan Univ.)

Collaborators on earlier works: S. C. Zhang (Stanford), J. P. Hu (Purdue), S. Chen and Y. P. Wang (IOP, CAS).

Supported by NSF, AFOSR.
Outline

• **Introduction: what is large?**

 Large symmetry (large N) rather than **large spin magnitude** (large S). Quantum spin fluctuations are **enhanced** rather than **suppressed**.

• **Generic Sp(4) symmetry (spin-3/2).**

 Unification of antiferromagnetism, superconductivity, and charge-density-wave.
 http://online.kitp.ucsb.edu/online/coldatoms07/wu2/

• **Slater v.s. Mott: quantum phase transition at SU(6) -- QMC**

 Interplay between charge and spin degrees of freedom

• **Pomeranchuk effect (thermodynamics) -- QMC.**
The simplest interacting model of lattice fermions

\[H = - \sum_{{(ij)},\sigma} t \{ c_{{i,\sigma}}^+ c_{{j,\sigma}} + h.c. \} - \mu \sum_{{i,\sigma}} c_{{i,\sigma}}^+ c_{{i,\sigma}} + U \sum_{{i}} n_{{i,\uparrow}} n_{{i,\downarrow}} \]

- Hubbard 1963: itinerant ferromagnetsim (FM), not successful.

- But successful for metal-Mott insulator transitions.

- Can the single band Hubbard describe high T\textsubscript{c} cuprates?

--- Still in debates.
Some rigorous results

• **1D Mott physics:** half-filled (U>0).

 1. Charge gap opens at infinitesimal U (relevance of Umklapp term)
 2. Spin channel remains critical – no symmetry breaking

 C. N. Yang, PRL 19, 1312 (1967); Lieb and F. Y. Wu, PRL 20, 1445, (1968).

 Field theoretical methods, DMRG simulations

• **2D AFM long-range-order:** the square lattice (half-filled).

 Determinant quantum Monte-Carlo (DQMC): Sign-problem free at half filling -- non-perturbative method, asymptotically exact

Hidden symmetry (pseudo-spin)

- Yang and Zhang’s η-pairing \rightarrow generators of SU(2) in the charge channel.

$$\eta^- = \sum_i (-)^i c_{i\downarrow} c_{i\uparrow}, \quad \eta^+ = \sum_i (-)^i c_{i\uparrow} c_{i\downarrow}, \quad [\eta^-, \eta^+] = 2N$$

- Degeneracy between charge-density-wave (CDW) and superconductivity (SC) at half-filling ($U<0$)

$$0_{cdw} = \sum_i (-)^i n_i, \quad \Delta = \sum_i c_{i\uparrow} c_{i\downarrow}, \quad \Delta^+ = \sum_i c_{i\downarrow} c_{i\uparrow}, \quad [\eta^+, \Delta] = O_{CDW}$$

- Pseudo-Goldstone: η-mode

$$H(\eta^+ | G_{SC}) = (\mu - \mu_0) (\eta^+ | G_{SC}), \quad (\mu \geq \mu_0)$$
Exotic spin states in the Mott-insulating phase

- **Bosonic large-N -- Neel, dimer ordering.**

- **Fermionic large-N -- spinon Fermi surface, Dirac point, etc.**

- **RVB, quantum dimer model, etc.**

- **Frustration -- ring exchange, J_1-J_2 square lattice, Kagome, etc.**

Theory progress with large-spin fermions

- Novel physics inaccessible in usual solid state systems.

- Early work by Ho and Yip (PRA and PRL 1999).

Richer Fermi liquid properties and Cooper pairing structures than those in spin-1/2 electron systems.

- **A new view point: high symmetries, Sp(2N), SU(2N).**

Sp(4), SO(5), SU(4): (spin $-\frac{3}{2}$) ^{132}Cs, ^{9}Be, ^{135}Ba, ^{137}Ba, ^{201}Hg

A new strongly correlated system: optical lattices

- Interaction effects tunable by varying laser intensity.

\[t : \text{inter-site tunneling} \]
\[U : \text{on-site interaction} \]
Experiment breakthrough of large-spin fermions

Realization of a SU(2) × SU(6) System of Fermions in a Cold Atomic Gas

Shintaro Taie,¹,* Yosuke Takasu,¹ Seiji Sugawa,¹ Rekishu Yamazaki,¹,² Takuya Tsujimoto,¹ Ryo Murakami,¹ and Yoshiro Takahashi¹,²

Degenerate Fermi Gas of ^{87}\text{Sr}

B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian

Viewpoint

Exotic many-body physics with large-spin Fermi gases

Congjun Wu
Department of Physics, University of California, San Diego, CA 92093, USA
Published November 1, 2010

The experimental realization of quantum degenerate cold Fermi gases with large hyperfine spins opens up a new opportunity for exotic many-body physics.
An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling

Shintaro Taie¹*, Rekishu Yamazaki¹,², Seiji Sugawa¹ and Yoshiro Takahashi¹,²

Many recent progresses: Fallani et al; Jun Ye et al; K. Sengstock et al; Foelling/Bloch et al,
What is large?

- High symmetry (large N, SU(2N), Sp(2N)) rather than large spin magnitude (large S).

- High symmetries do not occur frequently in nature, since every new symmetry brings with itself a possibility of new physics, they deserve attention.

 --- comment from D. Controzzi and A. M. Tsvelik, cond-mat/0510505

- Quantum spin fluctuations are enhanced NOT suppressed.

- SU(2N) and Sp(2N) were introduced to condensed matter physics as a formal tool, say, 1/N-expansion.
Transition metal oxides (**large S → classical**)

- **Large spin magnitude** from Hund’s coupling.

- **Inter-site coupling**: exchange a **single pair** of electrons.

- **1/S-fluctuations**: \(\Delta S_z = \pm 1 \)

- Bilinear exchange dominates

 \[
 \frac{t^2}{U} \vec{S}_i \cdot \vec{S}_j + \frac{t^4}{U^3} (\vec{S}_i \cdot \vec{S}_j)^2 + \ldots
 \]

C. Wu, Physics 3, 92 (2010).

Cold fermions: **large N**→ **enhanced fluctuations!**

- Large-hyperfine-spin as a whole object (no ionization).

\[\Delta S_z = \pm 1, \pm 2, \ldots \pm S \]

- One step of super-exchange can completely overturn spin config.

- Bilinear, bi-quadratic, bi-cubic terms, etc., are all at equal importance.

\[\vec{S}_i \cdot \vec{S}_j, (\vec{S}_i \cdot \vec{S}_j)^2, (\vec{S}_i \cdot \vec{S}_j)^3 \]
Two views of spin quartet (weight diagrams of Lie algebra)

Solid: SU(2) (1D lattice)

- S_\pm S_\pm S_\pm S_z
- -3/2 -1/2 1/2 3/2

A high rank spinor Rep. of a small group.

Off-diagonal operator: (fluctuation) S_\pm

Cold fermions Sp(4) or SO(5) (2D lattice)

- $\pi_{1\pm}$ m_2
- $\pi_{2\pm}$ $\pi_{3\pm}$ $\pi_{4\pm}$ m_1

- The fundamental spinor Rep of a large group.

- Much more off-diagonal operators.

$\pi_{1\pm}$, $\pi_{2\pm}$, $\pi_{3\pm}$, $\pi_{4\pm}$
SU(2N), Sp(2N) (2N=2S+1)

• Alkaline-earth fermions: SU(2N), equivalent 2N components.

 fully filled electronics shells \rightarrow spin-independent interaction

• Alkali fermions: broken SU(2N), spin-dependent interaction.

• Symplectic symmetry:

 SU(2N) \rightarrow Sp(2N)

 Good properties under time-reversal transformation.
Outline

- **Introduction: what is large?** large \(N \) v.s. large \(S \)

- **Generic \(\text{Sp}(4) \) symmetry (spin-3/2).**

 Unification of antiferromagnetism, superconductivity, and charge-density-wave.

 http://online.kitp.ucsb.edu/online/coldatoms07/wu2/
The simplest case spin-3/2: **Hidden symmetry!**

- **Spin 3/2 atoms:** ^{132}Cs, ^9Be, ^{135}Ba, ^{137}Ba, ^{201}Hg.

- **$\text{Sp}(4)$ ($\text{SO}(5)$)** symmetry without fine tuning regardless of dimensionality, particle density, and lattice geometry!

$\text{Sp}(4)$ in spin 3/2 systems $\leftrightarrow \text{SU}(2)$ in spin $\frac{1}{2}$ systems

- **SU(4) symmetry** is realized iff the interaction is spin-independent.

- Importance of high symmetries: unification of competing orders, description of strong spin fluctuations, etc.

Spin-3/2 Hubbard model in optical lattices

\[H = \sum_{\langle ij \rangle, \alpha} -t\{c_{i,\alpha}^+ c_{j,\alpha} + h.c.\} - \mu \sum_i c_{i,\alpha}^+ c_{i,\alpha} + U_0 \sum_i \eta^+(i) \eta(i) + U_2 \sum_{a=1 \sim 5} \chi_a^+(i) \chi_a(i) \]

- Fermi statistics: only \(F_{\text{tot}} = 0, 2 \) are allowed; \(F_{\text{tot}} = 1, 3 \) are forbidden.

singlet: \(\eta^+(i) = \sum_{\alpha\beta} \langle 00 | \frac{3}{2} \frac{3}{2} ; \alpha\beta \rangle c_{\alpha}(i) c_{\beta}(i) \)

quintet: \(\chi_a^+(i) = \sum_{\alpha\beta} \langle 2\alpha | \frac{3}{2} \frac{3}{2} ; \alpha\beta \rangle c_{\alpha}(i) c_{\beta}(i) \)

- For arbitrary values of \(t, \mu, U_0, U_2 \) and lattice geometry, there is an exact \(\text{Sp}(4) \), or \(\text{SO}(5) \) symmetry.
What is Sp(4)(SO(5)) group?

- SU(2) (SO(3)) group.
 - 3-vector: \(x, y, z\); 3-generator: \(L_{12}, L_{23}, L_{31}\).
 - 2-spinor: \(|\uparrow\rangle, |\downarrow\rangle\)

- Sp(4)(SO(5)) group.
 - 5-vector: \(n_1, n_2, n_3, n_4, n_5\)
 - **10-generator**: \(L_{ab} \ (1 \leq a < b \leq 5)\)
 - 4-spinor: \(|\uparrow\rangle, |\uparrow \frac{3}{2}\rangle, |\uparrow \frac{1}{2}\rangle, |\downarrow \frac{1}{2}\rangle, |\downarrow \frac{3}{2}\rangle\)

- We will see what quantities correspond to these 5-vector and 10-generator.
spin-3/2 algebra \(\psi^+ M_{\alpha\beta} \psi \)

- Total degrees of freedom: \(4^2 = 16 = 1 + 3 + 5 + 7 \).

1 density operator and 3 spin operators are far from complete.

- Rank: 0
 - 1, \(F_x, F_y, F_z \)
- \(M_{\alpha\beta} \) rank: 2
 - 2 \(\xi^a_{ij} F_i F_j \) (\(a = 1 \sim 5 \)):
 - \(F_x^2 - F_y^2, F_z^2 - \frac{5}{4} \),
 - \(\{ F_x, F_y \}, \{ F_y, F_z \}, \{ F_z, F_x \} \)
- 3 \(\xi^a_{ijk} F_i F_j F_k \) (\(a = 1 \sim 7 \))

- **Spin-quadrupole matrices** (rank-2 tensors) form five-\(\Gamma \) matrices (SO(5) vector) --- the same \(\Gamma \)-matrices in Dirac equation.

\[
\Gamma^a = \xi^a_{ij} F_i F_j , \quad \{ \Gamma^a, \Gamma^b \} = 2 \delta_{ab} , \quad (1 \leq a, b \leq 5)
\]
Hidden conserved quantities: **spin-octupoles**

- Both $F_{x,y,z}$ and $\xi_{ijk} F_i F_j F_k$ commute with Hamiltonian \to
 10 SO(5) generators: $10 = 3 + 7$.

- **7 spin-octupole operators** are the hidden conserved quantities.

\[\Gamma^{ab} = \frac{i}{2} [\Gamma^a, \Gamma^b] \quad (1 \leq a < b \leq 5) \]

- SO(5): **1 scalar + 5 vectors + 10 generators = 16**

 Time Reversal

 - 1 density: $n = \psi^+ \psi$; even
 - 5 spin-quadrupole: $n_a = \frac{1}{2} \psi^+ \Gamma^a \psi$; even
 - 3 spins + 7 spin-octupole: $L_{ab} = \frac{1}{2} \psi^+ \Gamma^{ab} \psi$; odd
Unify AFM, SC, CDW with **exact** symmetries
(half-filled, bipartite lattice)

- SO(7): AFM (5-spin quadrupole) + SC (singlet).

- Large symmetry manifold--the adjoint rep. of SO(7). AFM(10-spin+spin octupole) + SC (10-quintet) + CDW.

\[F : SO(7) \]
\[U_0 = -3U_2 \]

\[G : Sp(4) \otimes SU(2) \]
\[U_0 = 5U_2 \]

\[E : SU(4) \]
\[U_0 = U_2 \]

\[B : 5\text{-}AFM \]

\[A : 10\text{-}AFM \]

\[C : 2\text{-singlet SC} \]

\[D : 1\text{-CDW} \]

\[H : SO(7) \]
\[U_0 = -3U_2 \]
Sign-problem free QMC algorithm away from half-filling

- An equivalent formulation:

\[
H = \sum_{\langle ij \rangle, \sigma} \left(-t \{ c_{i,\alpha}^+ c_{j,\alpha} + h.c. \} - \mu \sum_i c_{i,\alpha}^+ c_{i,\alpha} \right) - \sum_{i, 1 \leq a \leq 5} \left\{ V(n(i) - 2)^2 + Wn_a^2(i) \right\} \\
V = -\frac{3U_0 + 5U_2}{16}, \\
W = \frac{U_2 - U_0}{4}
\]

- Time-reversal invariant Hubbard-Stratonovich decomposition at \((V, W>0)\).

- Fermion determinant remains positive-definite at any filling.

\[
U_0 < U_2 < -\frac{3}{5} U_0
\]

- Sign problem free region includes Superconductivity, CDW, AFM.
“Grand-unifications” – elegancy and power of the group theory

- Pseudo-spin SO(3=2+1) unifies SC (singlet) + CDW

 41mev neutron resonance mode in the high Tc SC state: pseudo-Goldstone mode (π-mode)

- Exact SO(7=2+5) symm. unifies SC + AFM (5-spin quadrupole).

\[
\begin{align*}
\left[\chi^+_a, \Delta\right] &= AF_{a,qd} \\
\left[H, \chi^\pm_a\right] &= \mp (\mu - \mu_0) \chi^\pm_a \\
H(\chi^+_a \mid G_{SC}) &= \left[E_G + (\mu - \mu_0) \right] \langle \chi^+_a \mid G_{SC} \rangle \\
5-\chi \text{ models: rotate SC} \leftrightarrow \text{AF.} \\
\text{Analogy to the } \pi \text{-modes in high Tc.}
\end{align*}
\]
Non-abelian statistics – Alice vortex loop/particle
(SO(4) Cheshire charge)

• Quintet pairing \((S=2) \rightarrow \) half-quantum vortex loop carrying spin quantum number.

\[
|\text{init}\rangle = \left| \frac{3}{2} \right
angle_p \otimes |\text{zero charge}\rangle_{\text{vort}}
\]

\[
|\text{final}\rangle = \left| \frac{1}{2} \right
angle_p \otimes |S_z = 1\rangle_{\text{vort}} - \left| \frac{-1}{2} \right
angle_p \otimes |S_z = 2\rangle_{\text{vort}}
\]

\[
|00;00\rangle_{vt} \otimes \left| \frac{1}{2} \right
angle_{q_p},
\]

\[
\left| \frac{1}{2} \frac{-1}{2} \right\rangle_{vt} \otimes |00;\frac{1}{2}\frac{1}{2}\rangle_{q_p} - \left| \frac{1}{2} \frac{-1}{2} \right\rangle_{vt} \otimes |00;\frac{1}{2}\frac{-1}{2}\rangle_{q_p}.
\]

More details

© World Scientific Publishing Company

HIDDEN SYMMETRY AND QUANTUM PHASES
IN SPIN-3/2 COLD ATOMIC SYSTEMS

CONGJUN WU
Kavli Institute for Theoretical Physics, University of California,
Santa Barbara, CA 93106, USA
wucj@kitp.ucsb.edu

Received 31 August 2006
Outline

- **Introduction: what is large?** large N v.s. large S

- **Generic Sp(4) symmetry (spin-\(\frac{3}{2}\)).**

 Unification of antiferromagnetism, superconductivity, and charge-density-wave.
 http://online.kitp.ucsb.edu/online/coldatoms07/wu2/

- **Slater v.s. Mott: quantum phase transition at SU(6) -- QMC**

 Interplay between charge and spin degrees of freedom
SU(2): Slater V. S. Mott (half-filling)

- Fermi surface nesting (small U/t): divergent AFM susceptibility; strong charge fluctuations.

\[\vec{Q} \rightarrow \vec{\sigma} \rightarrow \vec{\sigma} - \vec{Q} \]

\[m \propto t e^{-\frac{\sqrt{t}}{U}} \]

\[\vec{Q} = (\pi, \pi) \]

- Local moments (Large U/t): charge fluctuation suppressed; AFM super-exchange.

\[H = J \sum_i (\vec{S}_i \cdot \vec{S}_j - \frac{1}{4}) \]
SU(2): no phase transition

• SU(2): smooth cross-over from Slater to Mott region.

Projector determinant QMC + pinning field.

Neel moment
Half-filled SU(2N) Hubbard model (local moment limit)

\[H = -t \sum_{\langle i,j \rangle, \sigma=1}^{2N} \{c_{i,\sigma}^+ c_{j,\sigma} + h.c.\} + \frac{U}{2} \sum_i (n_i - N)^2 \]

\[n_i = \sum_{\sigma=1}^{2N} n_{i,\sigma} \]

• SU(4) as an example. In the atomic limit, \(t=0 \).

\[\Delta E = U \]

• Turning on \(t \), number of super-exchange processes scales as \(N^2 \).

SU(4)
one step of exchange
two steps of exchanges
Enhancement of spin fluctuations

• As increasing $2N$, the Neel states become unfavorable.

\[\Delta E = -2zN \frac{t^2}{U} \]

![classic-Neel bond SU(2N) singlet]

• Bond dimer state consists of $\left(\frac{2^N}{N} \right)$ resonating configurations.

• As $N > z$ (coordination number), valence bond dimerization is favored (Sachdev + Read).
Projector QMC with the pinning field

• Usual methods to identify long-range-order in simulations:

1) 2-point correlation function:
\[
\lim_{r \to \infty} <S\left(\frac{L}{2}\right)S(0)> \neq 0
\]

2) Structure factor:
\[
\frac{1}{L^2} \sum <S(r)S(0)> e^{iQr} \neq 0
\]

• The pinning field method (sensitive to weak ordering):

add external field at central sites to explicitly break the symmetry

\[
H_{pin,n} = h\{m_{i_0} - m_{j_0}\}
\]

\[
m_Q(L) = \frac{1}{L^d} \sum \langle S(r) \rangle e^{iQr} \quad L \to \infty
\]

QMC with pinning field: sensitive

\[m_Q(L) = \frac{1}{L^d} \sum \langle S(r) \rangle e^{iQr} \]

\[S_Q(L) = \sum \langle S(r) S(0) \rangle e^{iQr} \]

Pinning field

Structure factor

SU(6), U=4

\[h_{ij} = 1 \]
\[h_{ij} = 2 \]

\[\text{U=4} \]
\[\text{U=10} \]
QMC with pinning field: NOT over-sensitive

- 1D Hubbard model:

 SU(2): critical behavior

 SU(4): no Neel order

\[m(L) \text{ vs. } (\log L)^{1/4}/L^{1/2} \]

\[m(L) \text{ vs. } 1/L \]
SU(6): Slater and Mott are different phases

- SU(4) and SU(6): non-monotonic behavior of Neel moment.
- Complete suppression of AFM for SU(6).

Mott gap: short-range charge fluctuations

- Single particle gap extracted from Green’s function.

\[G(i, i, \tau) = \left\langle G \left| c_\alpha^+(i, \tau)c_\alpha(i,0) \right| G \right\rangle \]
\[\Rightarrow e^{-\Delta_c \tau} \]

- Mott insulating states do not mean that charge does not move! Charge localization length.

\[\xi_c / a_0 \approx t / \Delta_c \]

- Enhancing charge fluctuations as N increases! It is NOT legitimate to neglect charge degree of freedom.
Estimation of the single particle gap v.s N (large U)

- Charge gap decreases due to the enhanced number of hopping processes of charge excitations.

\[\Delta_c = \frac{U}{2} \quad \Delta_c = \frac{(U-W)}{2} \]

\[W \propto Nt \]

\(SU(2) \)

\(SU(4) \)
Rapid increase of Mott gap around $U \sim 10$ (SU(6))

$U / t = 8$

$U / t = 12$

$\Delta_c / t \approx 0.2 \quad \Delta_c / t \approx 1.26$
Thermodynamics: Pomeranchuk effect

- In Mott-insulators, all the sites contribute to entropy through spin configurations, while in Fermi liquids, only fermions close to Fermi surfaces contribute.

- Pomeranchuk effect is more efficient in large spin systems due to the enhanced entropy capability.

Pomeranchuk effect (SU(6), half-filling)

- Iso-entropy curve (three-particle per site).

\[S_{su(2N)} = \frac{S}{(NL^2)} \]

\[\frac{S_{su(2N)}(T)}{k_B} = \ln 4 + \frac{E(T)}{T} - \int_T^\infty dT' \frac{E(T')}{T'^2}, \]

- As entropy per particle \(s < 0.7 \), increasing \(U \) can cool the system below the anti-ferro energy scale \(J \).

\[J = \frac{4t^2}{U} \]

Sample size \(10 \times 10 \)

Probability of onsite occupation (SU(4))

\[P(0) = \prod_{\alpha=1}^{4} (1 - n_i^\alpha); \]
\[P(1) = \sum_{\alpha=1}^{4} n_i^\alpha \prod_{\beta \neq \alpha} (1 - n_i^\beta); \]
\[P(2) = \sum_{\alpha \neq \beta} n_i^\alpha n_i^\beta \prod_{\gamma \neq \alpha \beta} (1 - n_i^\gamma). \]
Digression: itinerant FM based on the Hubbard model

• Fails of the Stoner mechanism: exchange included but correlation neglected!

• A sufficient condition itinerant FM – a rigorous result as a reference point.

 Hund’s rule + quasi 1D band + strong correlation \(\rightarrow\) itinerant FM

• Non-perturbative QMC study on Cure-Weiss metals and magnetic transitions.

• Cold atom p-orbital systems and SrTiO\(_3\)/LaAlO\(_3\) interface.

Conclusion

• Large-spin cold fermions are quantum-like NOT classical!

• Elegancy of unification (group theory based on $Sp(4)$):
 AFM, SC and CDW phases/ Non-abelian Alice/Cheshire physics

• SU(6) Mott-ness: competition between Fermi surface (Slater) and local moments (Mott).
 Quantum phase transitions inside the insulating regime.

• Pomeranchuk effect of 2D SU(6) Hubbard model.