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In this supplementary material, we investigate ther-
modynamic quantities including compressibility and
nearest-neighbor spin-spin correlations. These quanti-
ties, though not directly related with the Pomeranchuk
cooling, are of direct interests in current experiments
in ultracold atom physics. They provide a comprehen-
sive understanding of thermodynamical properties of the
SU(2N) Hubbard model at half-filling.
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FIG. 1: The normalized compressibility κsu(2N)/(2N) v.s. T
at U/t = 4 for 2N = 2, 4, and 6.

COMPRESSIBILITY

The compressibility κ can be expressed in terms of the
global charge fluctuations as

κsu(2N) =
1

L2

∂Nf

∂µ
=

1

TL2
(〈N̂2

f 〉 − 〈N̂f 〉
2), (1)

where N̂f =
∑

i n̂i is the total fermion number operator
in the lattice; µ is the chemical potential. In Fig. 1, we
plot the simulated results for the normalized κsu(2N)/N ,
i.e., the contribution to κsu(2N) per fermion component.
They behave similarly to each other. κsu(2N) scales as
1/T like ideal gas at high temperatures, while they are
suppressed at low temperatures. At zero temperature,

κsu(2N) is suppressed to zero due to the charge gap in
the Mott-insulating states. κsu(2N) reaches the maxi-
mum at an intermediate temperature scale which can be
attributed to the energy scale of charge fluctuations.
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FIG. 2: The normalized SU(2N) susceptibilities χsu(2N) v.s.
T with fixed U/t = 4 for 2N = 2, 4, and 6.

SPIN SUSCEPTIBILITY

At finite temperatures, no magnetic long-range-order
should exist in the 2D half-filled SU(2N) model due to its
continuous symmetry. The normalized uniform SU(2N)
spin susceptibility is defined as

χsu(2N)(T ) =
β

NL2

∑

~i,~j

Mspin(i, j). (2)

The DQMC simulation results are presented in Fig. 2
for U/t = 4. At high temperatures, χsu(2N) exhibits
the standard Curie-Weiss law which scales proportional
to 1/T . χsu(2) reaches the maximum at an intermedi-
ate temperature at the scale of J below which χsu(2) is
suppressed by the AF exchange. At the lowest temper-
ature we simulated, we did not observe the suppressions
of χsu(2N) for 2N = 4 and 6. The nature of the ground
states of half-filled SU(2N) Hubbard model remains an



2

open question in literatures when 2N is small but larger
than 2. Nevertheless, we expect that they are either AF
long-range-ordered like the case of SU(2), or quantum
paramagnetic with or without spin gap like in the large-
N limit. In either case, χsu(2N) should be suppressed to
zero with approaching zero temperature.
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FIG. 3: The normalized NN spin-spin correlation v.s. T/t at
U/t = 4 for 2N = 2, 4, and 6.

THE NEAREST-NEIGHBOR SPIN-SPIN

CORRELATION

The nearest-neighbor (NN) spin-spin correlation in the
SU(2N) Hubbard model is defined as:

MspinNN =
1

(2N)2 − 1

∑

α,β

〈Sαβ,iSβα,j〉, (3)

where i and j are two nearest-neighbor lattice sites, and
Sαβ,i = c†α,icβ,i −

1
2N δαβni. For the SU(2) Hubbard

model, the NN correlations have been probed recently
using the lattice modulation technique [1]. The NN spin-
spin correlations v.s. T/t for fixed U/t and different 2N
have been plotted in Fig. 3. Notice that the monotonic
behavior of NN spin-spin correlations as a function of T
indicates that these quantities can be used to measure
temperatures and entropy in the Mott-insulating states.

SPIN-SPIN CORRELATIONS IN REAL SPACE

In Fig.4, we plot the renormalized equal time spin-spin
correlations for the SU(2N) Hubbard model as a function

of distance defined as

Mspin(r) =
1

(2N)2 − 1
〈
∑

α,β

Sαβ(i)Sβα(i+ rex)〉, (4)

which exhibit a staggered antiferromagnetic structure.
For the case of SU(4) and SU(6), spin-spin correla-
tion functions decay much more drastically than that of
SU(2). This agrees with the fact that the AF correlations
of the SU(2N) Hubbard model are weaken with increas-
ing 2N .
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FIG. 4: The normalized spin-spin correlations as functions
of distance (along the x-axis) with T/t = 0.1, U/t = 4 and
2N = 2, 4, and 6.

THE CHARGE GAP

The charge gap is defined as the energy cost to add
one particle in the ground state of the system composed
of N -particles. Assume that

Ĥ |ΨN+1
0 〉 = EN+1

0 |ΨN+1
n 〉,

Ĥ |ΨN
0 〉 = EN

0 |ΨN
n 〉, (5)

where Ĥ is the Hamiltonian of the grand canonical en-
semble for the SU(2N) Hubbard model as Eq. (1) in
the main text. (The chemical potential µ is set 0 in Eq.
(1)). The charge gap is ∆c = EN+1

0 − EN
0 . The onsite

time-displaced Green’s function for τ > 0 reads

G>(~r = 0, τ) =
1

L2

∑

i

G>(τ)ii =
1

L2

∑

i

〈ΨN
0 |eτĤcie

−τĤc†i |Ψ
N
0 〉.
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By inserting the complete set I =
∑

n |Ψ
N+1
n 〉〈ΨN+1

n |, the above equation becomes

G>(0, τ) =
1

L2

∑

i,n

e−τ(EN+1
n

−EN

0 )〈ΨN
0 |ci|Ψ

N+1
n 〉〈ΨN+1

n |c†i |Ψ
N
0 〉 =

1

L2

∑

i,n

e−τ(EN+1
n

−EN

0 )|〈ΨN
0 |ci|Ψ

N+1
n 〉|2. (6)

Therefore, at large τ , we have G>(~r = 0, τ) ∼ e−τ∆c

which can be used to estimate the value of ∆c [2].
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