Supplementary material for Pomeranchuk cooling of the SU(2N) ultra-cold fermions
in optical lattices
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In this supplementary material, we investigate ther-
modynamic quantities including compressibility and
nearest-neighbor spin-spin correlations. These quanti-
ties, though not directly related with the Pomeranchuk
cooling, are of direct interests in current experiments
in ultracold atom physics. They provide a comprehen-
sive understanding of thermodynamical properties of the
SU(2N) Hubbard model at half-filling.
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FIG. 1: The normalized compressibility s,,cn)/(2N) v.s. T
at U/t =4 for 2N = 2,4, and 6.

COMPRESSIBILITY

The compressibility x can be expressed in terms of the
global charge fluctuations as

1 ON 1 - -
Ksu(2N) = ﬁa—‘uf = ﬁ(<Nﬁ> - <Nf>2)7 (1)

where Nf = >, N is the total fermion number operator
in the lattice; p is the chemical potential. In Fig. 1, we
plot the simulated results for the normalized kg, 2n5) /N,
i.e., the contribution to kg, @2n) per fermion component.
They behave similarly to each other. kg, on) scales as
1/T like ideal gas at high temperatures, while they are
suppressed at low temperatures. At zero temperature,

Ksu(2N) 18 suppressed to zero due to the charge gap in
the Mott-insulating states. fis,(2n) reaches the maxi-
mum at an intermediate temperature scale which can be
attributed to the energy scale of charge fluctuations.
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FIG. 2: The normalized SU(2N) susceptibilities xsu(2n) V.S
T with fixed U/t = 4 for 2N = 2,4, and 6.

SPIN SUSCEPTIBILITY

At finite temperatures, no magnetic long-range-order
should exist in the 2D half-filled SU(2N) model due to its
continuous symmetry. The normalized uniform SU(2N)
spin susceptibility is defined as

Xeue)(T) = 31z 3 Mepinic ). )
ij

The DQMC simulation results are presented in Fig. 2
for U/t = 4. At high temperatures, X,,(2n) exhibits
the standard Curie-Weiss law which scales proportional
to 1/T. Xsu(2) reaches the maximum at an intermedi-
ate temperature at the scale of J below which x,2) is
suppressed by the AF exchange. At the lowest temper-
ature we simulated, we did not observe the suppressions
of Xsu2n) for 2N = 4 and 6. The nature of the ground
states of half-filled SU(2N) Hubbard model remains an



open question in literatures when 2N is small but larger
than 2. Nevertheless, we expect that they are either AF
long-range-ordered like the case of SU(2), or quantum
paramagnetic with or without spin gap like in the large-
N limit. In either case, Xy (2n) should be suppressed to
zero with approaching zero temperature.
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FIG. 3: The normalized NN spin-spin correlation v.s. T/t at
U/t =4 for 2N = 2,4, and 6.

THE NEAREST-NEIGHBOR SPIN-SPIN
CORRELATION

The nearest-neighbor (NN) spin-spin correlation in the
SU(2N) Hubbard model is defined as:

1
MpinNN = (2]\7)72_1 QZB<SaB,iSBa,j>a (3)

where ¢ and j are two nearest-neighbor lattice sites, and
Sagi = CL,icﬂ,i — 3 0apn;. For the SU(2) Hubbard
model, the NN correlations have been probed recently
using the lattice modulation technique [1]. The NN spin-
spin correlations v.s. T/t for fixed U/t and different 2N
have been plotted in Fig. 3. Notice that the monotonic
behavior of NN spin-spin correlations as a function of T'
indicates that these quantities can be used to measure
temperatures and entropy in the Mott-insulating states.

SPIN-SPIN CORRELATIONS IN REAL SPACE

In Fig.4, we plot the renormalized equal time spin-spin
correlations for the SU(2N) Hubbard model as a function

of distance defined as

T SesSsuli+re). (@)
a,B

Msm'n(T) =

which exhibit a staggered antiferromagnetic structure.
For the case of SU(4) and SU(6), spin-spin correla-
tion functions decay much more drastically than that of
SU(2). This agrees with the fact that the AF correlations
of the SU(2N) Hubbard model are weaken with increas-
ing 2N.
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FIG. 4: The normalized spin-spin correlations as functions
of distance (along the z-axis) with T/t = 0.1, U/t = 4 and
2N = 2,4, and 6.

THE CHARGE GAP

The charge gap is defined as the energy cost to add
one particle in the ground state of the system composed
of N-particles. Assume that

H™) =
H|YY) =

A A

By W), (5)

where H is the Hamiltonian of the grand canonical en-
semble for the SU(2N) Hubbard model as Eq. (1) in
the main text. (The chemical potential p is set 0 in Eq.
(1)). The charge gap is A, = EY* — EV. The onsite
time-displaced Green’s function for 7 > 0 reads

1 N N
— > (e e H el wgy).
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By inserting the complete set [ = > |[UNT1)(WN+1| the above equation becomes

_(EN+1 N _(EN+1 N
G> (0,7) L2 Z (ENTI-E] <\I,N|C |\I,N+1><\I,N+1| T|‘I’o 3 Z (EY T —E] )|<\I,N|CZ|\I,N+1>| (6)
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Therefore, at large 7, we have G (7 = 0,7) ~ e T2¢ [2] F. F. Assaad and M. Imada, J. Phys. Soc. Jpn 65, 189
which can be used to estimate the value of A, [2]. (1996).
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