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We investigate the SU(2N ) symmetry effects with 2N > 2 on the two-dimensional interacting Dirac fermions
at finite temperatures, including the valence-bond-solid transition, the Pomeranchuk effect, the compressibility,
and the uniform spin susceptibility, by performing the determinant quantum Monte Carlo simulations of the
half-filled SU(2N ) Hubbard model on a honeycomb lattice. The columnar valence-bond-solid (cVBS) phase
only breaks the threefold discrete symmetry and thus can survive at finite temperatures. The disordered phase in
the weak coupling regime is the thermal Dirac semi-metal state, while in the strong coupling regime it is largely a
Mott state in which the cVBS order is thermally melted. The calculated entropy-temperature relations for various
values of the Hubbard interaction U show that the Pomeranchuk effect occurs when the specific entropy is below
a characteristic value of S∗—the maximal entropy per particle from the spin channel of local moments. The
SU(2N ) symmetry enhances the Pomeranchuk effect, which facilitates the interaction-induced adiabatic cooling.
Our work sheds light on future explorations of novel states of matter with ultracold large-spin alkaline fermions.
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I. INTRODUCTION

The low-energy quasiparticles on a honeycomb lattice
exhibit the two-dimensional (2D) massless Dirac-fermion-
type band structure. The interplay between charge and spin
degrees of freedom together with the Dirac band structure
brings novel features of quantum phases, which has become
a major research focus in condensed matter physics since the
discovery of graphene [1]. The strong interaction effects in
2D Dirac fermion systems have been investigated extensively
by applying quantum Monte Carlo (QMC) simulations to the
SU(2) Hubbard model, a paradigmatic model for Mott physics
of interacting electrons [2,3]. Because of the bipartite nature of
the honeycomb lattice, it exhibits the antiferromagnetic (AF)
long-range order in the Mott-insulating phase. The transition
from the Dirac semimetal phase to the AF insulating phase is
found to be continuous [4–6].

Dirac fermions are not unique to high energy and solid
state systems and also can be realized in optical lattices loaded
with ultracold fermionic atoms. Unlike spin- 1

2 electrons in
solids which usually possess the SU(2) symmetry, ultracold
fermions often carry large hyperfine spins. As proposed earlier
by one of the authors, Hu and Zhang [7], ultracold alkali
and alkaline-earth fermions provide an opportunity to study
high symmetries that are typically studied in the high energy
context. For example, the simplest large-spin fermions of
spin- 3

2 in optical lattices generically possess the high symmetry
of Sp(4), or, isomorphically SO(5), without fine tuning [7]. If
the interaction is spin independent, the symmetry is enlarged
to SU(4). These high symmetries are expected to give rise
to exotic quantum phases difficult to access in solids, which
provide important guidance in analyzing novel many-body
physics with multicomponent fermions [8]. On the other hand,
it has been pointed out that the alkaline-earth fermion systems
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respect the SU(2N ) symmetry, owing to their closed shell
electron structure. Their hyperfine spins are simply nuclear
spins, and thus the interatomic scatterings are spin indepen-
dent, leading to the SU(2N ) symmetry [9,10]. Excitingly,
the recent rapid progress of ultracold atom experiments have
already realized these SU(2N ) symmetric systems [11–15].
The quantum degenerate temperatures have been reached in
alkaline-earth atoms with the large hyperfine spins, e.g., 173Yb
with SU(6) symmetry [11] and 87Sr with the SU(10) symmetry
[12]. Excitingly, an SU(6) Mott insulator has also been realized
with 173Yb atoms in the optical lattice, and the Mott insulating
gap has been observed in the shaking lattice experiment [13].

It will be interesting to combine the SU(2N ) symmetry
and the 2D Dirac fermion together, which can be realized by
loading large spin alkaline-earth fermions into the honeycomb
optical lattice, to investigate novel physics absent in the SU(2)
Hubbard model of Dirac fermions. In a recent paper [16],
we investigated the novel effects of the SU(2N ) symmetries
on quantum many-body physics of Dirac fermions, includ-
ing quantum magnetism and the Dirac semimetal-to-Mott
insulator transitions, by performing the projector determinant
quantum Monte Carlo simulations of the half-filled SU(2N )
Hubbard model on a honeycomb lattice. We found that,
fundamentally different from the usual SU(2) Mott-insulating
phase which exhibits the AF Néel ordering, the SU(4) and
SU(6) Mott-insulating phases are identified with the valence-
bond-solid (VBS) order. Both the columnar VBS (cVBS) and
the plaquette VBS (pVBS) break the same type of symmetry
and compete, and the ground states are found to exhibit the
cVBS order. The nature of the Dirac semimetal-to-cVBS
order transition has been analyzed at the mean-field level.
It unveils the possibility of an exotic second order quantum
phase transition seemingly forbidden by the Ginzburg-Landau
theory, which is also investigated and confirmed by the
renormalization group analysis [17–20]. Besides, our mean-
field analysis also points out that the semimetal-to-cVBS
transition at finite temperatures is still the first order.
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In this work, we investigate the thermodynamic properties
of the 2D SU(2N ) Hubbard model on the honeycomb lattice
by employing the unbiased nonperturbative determinant QMC
simulations. We focus on the thermal cVBS transition and the
interaction-induced Pomeranchuk effect of the SU(2N ) Dirac
fermions. Since the cVBS state only breaks the discrete sym-
metry of lattice translation, it can survive at finite temperatures
and the transition to the disordered state can take place at finite
temperatures. The weak coupling Dirac-semimetal regime
and the strong coupling disordered Mott-insulating state are
connected at finite temperatures. The finite-temperature simu-
lation studies of Hubbard models show that the Pomeranchuk
effect occurs when the specific entropy is below a characteristic
value of S∗, where S∗ represents the maximum amount of
specific entropy carried by the spin channel. The Pomeranchuk
effect is dependent on the symmetry and the lattice structure.
We have shown that the multicomponent SU(2N ) Hubbard
model on a honeycomb lattice significantly facilitates the
Pomeranchuk effect, which starts with even relatively high
entropies. Other thermodynamic properties, including the
onsite particle number fluctuations, compressibility, and the
uniform spin susceptibility, are also analyzed.

The rest of the paper is organized as follows. In Sec. II,
the model Hamiltonian and parameters for determinant QMC
(DQMC) are introduced. In Sec. III, the thermal VBS transition
is studied. The entropy and the on-site occupation number are
studied in Sec. IV. Subsequently in Sec. V, the density com-
pressibility and uniform spin susceptibilities are investigated.
The conclusions are drawn in Sec. VI.

II. MODEL AND METHOD

A. The SU(2N) Hubbard model

At half-filling, the Hubbard model with SU(2N ) symmetry
takes the following form on a honeycomb lattice,

H = −t
∑

i∈A,êj ;α

(c†iαci+êj ,α + H.c.) + U

2

∑
i∈A⊕B

(ni − N )2,

(1)

where A and B denote two sublattices of the honeycomb
lattice; êj ’s with j = 1,2,3 are vectors connecting each site
with its three nearest neighbors; the spin index α runs from
1 to 2N and ni = ∑

α c
†
iαciα is the particle number operator

on site i; t and U are the nearest-neighbor hopping integral
and the on-site Coulomb repulsion, respectively. The chemical
potential μ vanishes in the grand canonical Hamiltonian due
to half-filling. U is defined in the following convention: In
the atomic limit, t/U → 0, if a single fermion is removed
from one site and put on any other site on the half-filled 2D
system, the energy cost of this charge excitation is U , which
is independent of N .

B. The numerical method

We employ the DQMC method based on the Blankenbecler-
Scalapino-Sugar algorithm [21]. QMC is a widely used
nonperturbative and unbiased numerical method for studying
2D strongly correlated systems. Compared to other methods,
the major advantage is that it is scalable to large sizes and

capable of yielding asymptotically exact results provided that
the sign problem is absent. The half-filled SU(2N ) Hubbard
model is free of the sign problem in the bipartite lattices. In the
DQMC simulations of the SU(4) and SU(6) Hubbard models
with repulsive interactions, an exact Hubbard-Stratonovich
(HS) decomposition is performed in the density channel
involving complex numbers, which maintains the SU(2N )
symmetry during the HS decomposition [22]. The method of
the HS decomposition is explained in Appendix B.

The parameters of the QMC simulations are presented
below. Unless specifically stated, the time discretization
parameter �τ is set to 1/30 at least, ensuring the convergence
of the second-order Suzuki-Trotter decomposition. The 2 ×
L × L honeycomb lattice with L = 9 is simulated under the
periodic boundary condition which preserves the translational
symmetry. The finite-size effect on the entropy-temperature
relations is analyzed in Appendix A. For a typical data point,
we use 10 QMC bins each of which includes 2000 warmup
steps and 8000 measurements. To investigate the thermal
phase transition by the finite-size scaling, the 2 × L × L

honeycomb lattices with L = 6,9,12,15 are simulated with
at least 20 QMC bins, each bin containing 500 warmup steps
and 500 measurements. In our simulations, the Hubbard U and
temperature T are given in the unit of t .

C. The order parameters

We define three bonds attached to site i as

di,êj
= 1

2N

2N∑
α=1

(c†i,αci+êj ,α + H.c.), (2)

where j = 1,2,3 represent three different bond orientations.
The cVBS and pVBS orders are defined in the same form as

DK (L) = 1

L2

∑
i∈A

(
di,êa

+ ωdi,êb
+ ω2di,êc

)
ei �K·�ri , (3)

where ω = ei 2
3 π and �K = ( 4π

3
√

3a0
,0). Their configurations are

depicted in Fig. 1. Following Ref. [16], the difference between
cVBS and pVBS can be distinguished through the following
parameter,

W =
∫

dzdz∗P (z,z∗) cos 3θ, (4)

where z = DK , θ = arg(z), and P (z,z∗) is the density of
probability that appears in Monte Carlo samplings. For the

FIG. 1. The cVBS (a) and pVBS (b) configurations break the
threefold discrete symmetry and exhibit a

√
3 × √

3 superunit cell.
(This figure is taken from Ref. [16].)
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ideal cVBS and pVBS states without fluctuations, W equals
1 and −1, respectively. Certainly, fluctuations weaken the
magnitudes of W , nevertheless, the sign of W can be used
to distinguish whether the ordering is cVBS or pVBS. For the
isotropic state, W = 0.

III. THE FINITE TEMPERATURE VBS TRANSITION

In Ref. [16], the Dirac semimetal-to-cVBS transitions are
shown to occur in the ground states of SU(4) and SU(6)
Hubbard models on a honeycomb lattice. Quantum spin
fluctuations are enhanced with increasing 2N , and thus the
strength of cVBS order in the SU(6) case is stronger than that
in the SU(4) case. In the SU(6) case, the cVBS order starts to
appear around U/t ≈ 11 and grows with increasing U until
reaching the peak value around U/t ≈ 14, and then decreases
as U further increases. The cVBS state breaks the threefold
discrete symmetry exhibiting the

√
3 × √

3 structure, and thus
the cVBS transition should survive at finite temperatures. In
this section, we will further investigate the finite-temperature
VBS transitions of the SU(6) Hubbard model.

The finite-size scalings of the VBS order parameters |DK | at
fixed temperatures with β = 10 and 17 presented in Figs. 2(a)
and 2(b), respectively, where β = t/T . At β = 10, the system
first undergoes a transition from the disordered phase to the

FIG. 2. Finite-size scalings of the VBS dimer parameter |DK | for
the half-filled SU(6) Hubbard model at different values of U and β

close to the phase boundary: (a) β = 10 with different values of U ;
(b) β = 17 with different values of U ; (c) U = 12 with different β;
(d) U = 14 with different β. The linear fitting is used starting from
L = 9, and error bars are smaller than data points.

VBS phase and reenters the disordered phase, as Hubbard
U increases. As shown in the analysis below, based on the
calculation of W , the nature of the thermal VBS phase is
the same as that in the ground state—the cVBS [16]. The first
transition located at U/t ≈ 11.5 is a finite-temperature version
of the ground state Dirac semimetal-to-cVBS transition, while
the second transition located around U/t ≈ 13.5 is the thermal
melting of the cVBS state in the Mott-insulating background.
At a lower temperature with β = 17, the VBS order strengths
are still nonmonotonic with U , and this feature persists into
the ground state as shown in the previous zero-temperature
projector DQMC simulations [16]. The reason is that the
reduction of the bond kinetic energy scale with increasing
U suppresses the strength of VBS ordering. In Figs. 2(c)
and 2(d), the finite-size scalings of cVBS order parameters
|DK | are shown for fixed values of U . As temperature
decreases, the VBS order develops. At U/t = 12, the critical
temperature Tc of the cVBS transition is located in the range of
8 < βc < 10, or, 1/8 > Tc/t > 1/10. Similarly, at U/t = 14,
11 < βc < 12.

In order to determine the type of the VBS state, we
present the finite-size scaling of W for U/t = 12 in Fig. 3. At
β < 10, W approaches zero in the thermodynamic limit, which
signifies an isotropic disordered phase. At β > 12, W has
already developed a positive value in the thermodynamic limit,
which indicates a cVBS ordered phase. The cVBS transition
temperature Tc based on the scaling of W is in agreement with
that based on the scaling of the VBS dimer parameter.

Based on the above analysis, the finite-temperature phase
diagram of the SU(6) honeycomb-lattice Hubbard model is
plotted in Fig. 4. The transition temperature Tc increases with
U in the interaction range 11 < U/t < 12, while it decreases
as U further increases. The nonmonotonic dependence of Tc

on U is consistent with the behavior of the cVBS ordering
strength in the ground state, which first increases until reaching
the maximum and then decreases as U further increases. The
phase diagram Fig. 4 suggests that an SU(6) symmetric Mott
insulator with the long-range cVBS order can be formed with
an atomic Fermi gas of 173Yb with the hyperfine spin I = 5/2,
if the ultracold fermions on an optical honeycomb lattice are

FIG. 3. Finite-size scalings of W (L) for the half-filled SU(6)
Hubbard model at U/t = 12 with different values of the inverse
temperature β.
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FIG. 4. The finite-temperature phase diagram of the half-filled
SU(6) Hubbard model on a honeycomb lattice. The black and
the blue lines represent the upper and lower boundaries of the
transition temperatures determined by the DQMC simulations. The
zero-temperature results are extracted from Ref. [16]. With denser U

and T , the two boundaries should merge into one. The red dashed
line represents the isoentropy curve of SSU (6) = 0.1.

cooled down to the temperature regime below T/t = 0.1.
Simulations performed in the next section show that this
temperature can be achieved by adiabatically increasing the
interaction U along the isoentropy curve of s/kB ≈ 0.1.

IV. THE POMERANCHUK EFFECT

In this section, we demonstrate, by means of the DQMC
simulation, the pronounced Pomeranchuk effect in the half-
filled SU(4) and SU(6) Hubbard models on a honeycomb
lattice.

A. The entropy-temperature relations

In ultracold atom experiments, entropy, rather than tem-
perature, is a directly measurable physical quantity [23].
We present below the entropy-temperature relations in the
half-filled SU(4) and SU(6) Hubbard models on a honeycomb
lattice. The entropy per particle can be calculated by:

S(T )

kB

= S(∞)

kB

+ E(T )

T
−

∫ ∞

T

dT ′ E(T ′)
T ′2 , (5)

where E(T ) is the internal energy per particle at temperature
T . In the high temperature limit, there are 22N possible states
on each site and thus S(∞) = kB

ln 22N

N
= kB ln 4 at half filling.

In Fig. 5, we present the entropy per particle of the SU(4)
and SU(6) Hubbard models as a function of T at various
values of U . In both cases, the S(T ) curves cross at a narrow
region around a characteristic point (T ∗, S∗). The characteristic
specific entropy S∗ increases with the number of fermion
components 2N as shown in Table I summarized from the
QMC results of this paper and previous publications. (On the
square lattice, the Pomeranchuk effect is absent for the SU(2)
fermions, because strong AF correlations of SU(2) fermions
reduce the entropy capacity, while the multicomponents of
a large spin suppress the AF correlations.) Additionally S∗
is insensitive to the lattice structure and the associated band
structure of SU(2N ) fermions. In fact, S∗ denotes the specific

FIG. 5. The entropy per particle as a function of T at different
values of U in (a) SU(4) and (b) SU(6) Hubbard models. Note that
the S − T curve for U = 0 is calculated in Appendix A. The lattice
size is L = 9.

entropy of each particle coming from the spin channel, which
can be estimated as

S∗ ≈ 1

N
ln

(2N )!

N !N !
. (6)

In the SU(2), SU(4), and SU(6) cases, S∗’s are approximately
ln 2 ≈ 0.69, 1

2 ln 6 ≈ 0.89, and 1
3 ln 20 ≈ 1.0, respectively,

which excellently agrees with Table I.
We first consider the low specific entropy regime S < S∗

in which the entropy per particle increases monotonically
with U at a fixed temperature. At weak coupling U , the
system is typically in the semimetal state. Its entropy is
mainly contributed by fermions near the Dirac points, and

TABLE I. The characteristic specific entropy S∗ for spin compo-
nents 2N = 2,4,6 with different lattice types.

Symmetry Lattice type S∗

SU(2) Square N/A [24]
Honeycomb ∼0.65 [25]

SU(4) Square ∼0.9 [26]
Honeycomb ∼0.9

SU(6) Square ∼1.0 [26]
Honeycomb ∼1.0
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thus is small due to the vanishing of density of states. As U

increases, the system becomes a Mott insulator, and the on-site
particle number fluctuations are still frozen in this temperature
regime. As a result, fermions on each site contribute to the
entropy by means of spin fluctuations. Hence, the semimetal
liquidlike phase is more ordered than the solidlike state at the
same temperature in the low temperature regime. This is an
example of the Pomeranchuk effect, which is first proposed
in the 3He system, where increasing pressure can further cool
the system in the low temperature regime. The characteristic
specific entropy S∗ indicates the largest specific entropy for
exhibiting the Pomeranchuk effect, above which this effect dis-
appears. The Pomeranchuk effect was found more prominent
in the SU(2N ) case due to the enhanced entropy contribution
from the spin channel [26–30]. On the honeycomb lattice,
the density of states at weak U is further suppressed in the
semimetal phase, and the AF correlations are also weakened by
the small coordination number. As a result, the Pomeranchuk
effect is more prominent than that in the square lattice.

As shown in Fig. 5, the fermion system can be driven to
lower temperatures by increasing the Hubbard U adiabatically.
Particularly interesting, the isoentropy curve of S/kB = 0.1
intersects the phase boundary near (U/t = 13,T /t = 0.1) as
shown in Fig. 4, which suggests a possible scenario for the
experimental realization of an SU(6) Mott insulator with the
cVBS order. In ultracold atom experiments, the interaction-
induced cooling has been achieved in optical lattices by fine
tuning the Hubbard U via Feshbach resonances [23].

In the high specific entropy regime S > S∗, the entropy
from the spin channel has been fully used up. Nevertheless, the
contribution from the charge channel, i.e., the fluctuations of
the onsite particle number, becomes significant. Increasing U

leads to the localization of fermions and thus suppresses charge
fluctuations. As a result, the entropy per particle decreases with
increasing U at a fixed temperature in this specific entropy
regime.

The temperature regime for exhibiting the Pomeranchuk
effect also has a lower boundary. On the honeycomb lattice, as
shown in Fig. 5, the Pomeranchuk effect becomes pronounced
roughly starting at T/t ∼ 0.1 which is at the same temperature
scale of the cVBS ordering. Below this temperature, the cVBS
order develops, which dramatically decreases the entropy and
then suppresses the Pomeranchuk effect.

It is interesting to note that, similar to the narrow crossing of
entropy curves revealed in our simulation, the narrow crossing
of specific heat curves was studied by Vollhardt in spin-1/2
correlated systems [31]. Following the same reasoning, in the
next section we shall explain analytically the narrowness of
the crossing region of entropy curves in the SU(2N ) case.

B. The narrow crossing of entropy curves

Along the same line as Vollhardt’s work for the SU(2)
case [31], in the SU(2N ) case the conjugate intensive variable
associated with U is

D(T ,U ) = 1

2L2

∂F (T ,U )

∂U
= 1

4L2

∑
i∈A⊕B

(ni − 〈ni〉)2, (7)

where F (T ,U ) is the free energy. At half filling, the average
particle number per site is 〈ni〉 = N , and D serves as the

FIG. 6. D as a function of temperature T for (a) SU(4) and (b)
SU(6) Hubbard models at half filling. The system size is L = 9. Error
bars are smaller than the data points.

variance characterizing the on-site particle number fluctuation.
Especially for the SU(2) case, D is just the on-site double
occupancy [31–33]. The temperature dependence of D is
calculated for a range of Hubbard U , as shown in Fig. 6.
It is seen that the on-site particle number fluctuations D are
suppressed with increasing U . The temperature dependence
of D is nonmonotonic due to the Pomeranchuk effect. For
each U , the on-site particle number fluctuation D achieves the
minimum at around T ∗ ∼ t .

The entropy per site S and the on-site particle number
fluctuation D satisfy the Maxwell relation

∂S(T ,U )

∂U
= −∂D(T ,U )

∂T
. (8)

We first illuminate why the entropy curves cross. Note that
the on-site particle number fluctuations D reach their minima
at around T ∗ ∼ t regardless of the coupling strength U , i.e.,
∂D(T ∗,U )/∂T ∗ = 0. Using the Maxwell relation (8), one
finds that ∂S(T ∗,U )/∂U = 0, which implies the crossing of
entropy curves at around T ∗ ∼ t .

We now explain the narrowness of the crossing region. We
expand S(T ∗,U ) as a power series in U − U0, with U0 chosen
at convenience. To the leading term, one obtains

S(T ∗,U ) ≈ S(T ∗,U0)

[
1 + 1

2

(U − U0)2

S(T ∗,U0)

∂2S(T ∗,U )

∂U 2
|U=U0

]
.

(9)
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The width of the crossing region is then determined by the
curvature of the entropy S(T ,U ) at T ∗. Using Eq. (8) and
∂D(T ∗,U )/∂T ∗ = 0, one obtains

∂2S(T ∗,U )

∂U 2
= − ∂

∂U

[
∂D(T ∗,U )

∂T ∗

]
= 0, (10)

which guarantees the entropy curves cross at a narrow region
around a characteristic point (T ∗,S∗).

C. The probability distributions of on-site occupation number

In the SU(2) Hubbard model, the double occupancy is
a physical observable in cold atom experiments [33,34].
This quantity behaves slightly nonmonotonic with temper-
ature [32]. In the high temperature regime where thermal
fluctuations dominate, the double occupancy can be used as
thermometers [35]. In this part, we will simulate the half-
filled SU(4) Hubbard model, illustrating the relation between
entropy and the distributions of on-site particle numbers.

The probability distribution P (n) of the on-site occupation
number n is defined as [26]

P (0) =
4∏

α=1

(
1 − nα

i

)
,

P (1) =
4∑

α=1

nα
i

∏
β �=α

(
1 − n

β

i

)
, (11)

P (2) =
∑
α �=β

nα
i n

β

i

∏
γ �=αβ

(
1 − n

γ

i

)
,

where nα
i is the particle number operator on site i with spin

α. The total probability is normalized to unity. The particle
number fluctuations also obey the particle-hole symmetry at
half filling and thus P (0) = P (4) and P (1) = P (3). In the
high temperature limit, the on-site occupation number obeys
the binomial distribution, which is limT →∞ P (k) = Ck

4/24.
In Fig. 7, the relationships between P (n) with n = 0,1,2

and the entropy S are presented. The distributions are dramat-
ically nonmonotonic with entropy even in the weak coupling
regime, e.g., U/t = 2,4, and 6. As expected, at half filling,
the most probable distribution of the SU(4) Dirac fermions on
each site is the double occupancy, and the deviation from the
double occupancy is due to charge fluctuations. These curves
show that roughly when S < S∗ ≈ 0.89, the onsite charge
fluctuations decrease with increasing entropy, and fermions
tend to localize consistent with the Pomeranchuk effect.
This seeming discrepancy is due to the dominant entropy
contribution from the spin channel. In cold atom experiments,
the site-resolved quantum gas microscopy can be used to detect
the on-site particle number distributions [36].

V. THE DENSITY AND SPIN RESPONSES

In this section, we investigate the density compressibility
and the uniform spin susceptibilities of the half-filled SU(2N )
Hubbard model on a honeycomb lattice.

FIG. 7. The probability distributions P (n) of the on-site particle
numbers (a) P (2), (b) P (1), and (c) P (0) versus entropy S at different
values of U in the half-filled SU(4) Hubbard model. The lattice size
is L = 9. The lines serve as a guide to the eye, and error bars are
smaller than the data points.

A. The density compressibility

The density compressibility is defined as

κ = β

2L2

⎛
⎝

〈(∑
i

ni

)2〉
−

〈∑
i

ni

〉2
⎞
⎠, (12)

which is related to the global density fluctuations. It is an
observable in cold atom experiments. The vanishing of κ at low
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FIG. 8. The density compressibility κ versus T at various values
of U in the half-filled (a) SU(4) and (b) SU(6) Hubbard models. The
lattice size is L = 9.

temperatures is a characteristic signature of the Mott insulating
states [37,38].

We present the DQMC simulation results for the density
compressibility of SU(4) and SU(6) Hubbard models on a
honeycomb lattice in Figs. 8(a) and 8(b), respectively. Here we
only calculate κ in the temperature regime corresponding to the
S > S∗ segment of the S(T ) curves. At low temperatures, the
simulation of κ becomes numerically unstable as explained
in Appendix B. At very high temperatures T � U , κ(T )
behaves like that of a classic ideal gas, i.e., κ ∼ 1/T , which
means charge incoherence. On the other hand, increasing U

while fixing T suppresses the compressibility. However, in
the zero temperature limit not shown in Fig. 8, κ should
go to zero both in the Dirac semimetal phase due to the
vanishing of density of states and in the cVBS state due to
the charge gap opening. Consequently, the 1/T divergence
of κ stops when T decreases to a certain temperature scale
dependent of t and U . At large values of U > Uc where
Uc is the critical interaction strength for the emergence of
the cVBS ground state, κ becomes decreasing along with
lowering T after reaching the maximal value at a temperature
comparable to U (Uc ≈ 7 and 11 in the SU(4) and SU(6) cases,
respectively [16]).

Note that, in the SU(6) case with U/t = 14, κ is nearly
suppressed to zero at T/t ∼ 1, a temperature scale comparable

to the bandwidth but still much smaller than the Hubbard
interaction. This is also the temperature scale for the thermal
melting of the cVBS state as shown in Fig. 4. Thus the
finite-temperature disordered states outside the cVBS phase
exhibit different characters: In the weak coupling side, it
is a finite-temperature semimetal state, while in the strong
coupling side, it is a finite-temperature Mott-insulating state
with thermally melted cVBS order. Nevertheless, they can be
smoothly connected at finite temperatures.

B. The uniform spin susceptibilities

The uniform spin susceptibility χ is defined as

χ = β

2L2

∑
i,j

Sspin(i,j ), (13)

where Sspin(i,j ) is the SU(2N ) version of the equal-time spin-
spin correlation:

Sspin(i,j ) = 1

(2N )2 − 1

∑
α,β

〈Sαβ,iSβα,j 〉. (14)

Note that Sαβ,i = c
†
α,icβ,i − δαβ

2N

∑2N
γ=1 c

†
γ,icγ,i are the genera-

tors of an SU(2N ) group and satisfy the commutation relation
[Sαβ,Sγ δ] = δβγ Sαδ − δαδSγβ .

In Fig. 9, the uniform spin susceptibility χ (T )’s of the
SU(4) and SU(6) Hubbard models on a honeycomb lattice
are plotted for various values of Hubbard U . The high
temperature behaviors of χ (T ) ∼ 1/T obey the Curie-Weiss
law, which shows the spin incoherence. Again this divergence
is suppressed at low temperatures since in the zero temperature
limit, χ (T ) approaches zero in both the Dirac semimetal
phase and the cVBS phase. In the former case, it is because
of the vanishing of density of states, while in the latter case,
it is due to the cVBS phase being a spin gapped phase. Thus
a peak in each χ (T ) curve must develop in the full range of
the Hubbard U . In the strong coupling regime, the peak is
located around the super-exchange energy scale J ≈ 4t2/U .
In contrast, the peak location in the weak coupling regime is
mostly determined by the bandwidth t , and consequently the
peak is located at the energy scale in which the density of
states becomes linear.

One observation from Fig. 9 is that χ (T ) increases
monotonically with U at a fixed temperature. In the weak
coupling regime, this is consistent with the mean-field analysis
concluding that the uniform spin susceptibility χ is enhanced
by the repulsive interaction [39]. In the strong coupling regime,
increasing U enhances the amplitudes of the onsite spin
moments by suppressing the change fluctuations, and thus
χ (T ) is also increased. At small values of U , a tiny upturn
occurs in the χ (T ) curve at low temperatures, which is caused
by the finite-size effect [40].

Considering the SU(4) and SU(6) Hubbard models on a
honeycomb lattice, the AF ordering does not occur even in
the ground state. Nevertheless, we also present the simulation
results of the AF structure factors and nearest-neighbor spin-
spin correlations in Appendix D.
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FIG. 9. The uniform spin susceptibilities χ versus temperature
T at various values of U in the half-filled (a) SU(4) and (b) SU(6)
Hubbard models. The lattice size is L = 9. Error bars are smaller
than the data points.

VI. CONCLUSIONS

In summary, we have employed the large-scale DQMC
simulations to study the effects of SU(2N ) symmetries on
thermodynamic properties of Dirac fermions. The Dirac
fermions are described in terms of the SU(2N ) Hubbard model
on a honeycomb lattice which captures the interplay between
charge and spin degrees of freedom. We have simulated
the finite-temperature properties of SU(4) and SU(6) cases,
including the thermal VBS phase transition, the Pomeranchuk
effect, the density compressibility, and spin susceptibilities.

We use the SU(6) case as an example to study the thermal
phase transition between the disordered state and the cVBS
state on a honeycomb lattice. In the SU(2) honeycomb-lattice
Hubbard model, the Mott insulating phase at T = 0 exhibits
the AF ordering which breaks the continuous SU(2) symmetry
and thus cannot exist at finite temperatures. Nevertheless,
the cVBS order in the SU(6) case only breaks a discrete
symmetry and does occur in the thermal transition. Based on
the above reasoning, the thermal cVBS phase transition is also
expected in the simulations of the SU(4) honeycomb-lattice
Hubbard model, though the cVBS order is weaker compared
with the SU(6) case. The simulation of entropy-temperature
relations shows that the S(T ) curves with different Hubbard
U cross at a narrow region around a characteristic point

(T ∗, S∗) characterizing the onset of the Pomeranchuk effect.
This characteristic specific entropy S∗ comes from the local
spin moment contribution estimated as S∗ ≈ 1

N
ln (2N)!

N!N! . As
demonstrated in our DQMC simulations, the SU(6) cVBS
Mott insulating state can be reached along the isoentropy curve
S/kB = 0.1 by the interaction-induced adiabatic cooling,
which sheds light on future explorations of novel states of
matter with ultracold 173Yb experiments.

It is worth noting that a plateau of S = S∗ is expected
to appear in a single S(T ) curve when Hubbard U is large
enough, due to the full release of spin entropy. In fact, the
roles of spin and charge channels in entropy production are
separated at around S = S∗, when the Coulomb repulsion U

becomes stronger than the critical interaction that leads to the
emergence of the cVBS ground state. Interestingly, in the weak
and intermediate coupling regimes, the simulated S(T ) curves
cross at around a characteristic point where S = S∗, though
S∗ is not noticeable in a single S(T ) curve. The underlying
physics of this special phenomenon may be revealed in future
studies.
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APPENDIX A: THE FINITE-SIZE EFFECT ON ENTROPY

In the weak coupling regime, the finite-size effect is
significant at low temperatures. We investigate the finite-size
dependence of entropy per particle of a half-filled SU(2N )
tight-binding model on a honeycomb lattice. The entropy per
particle can be calculated by [41]:

S(T ,U = 0) = − 1

L2

∑
k

(f ln f + (1 − f ) ln(1 − f )),

(A1)
where f is the Fermi-Dirac distribution. As shown in
Fig. 10(a), the residue entropy caused by finite-size effect
decreases with increasing lattice size. It is seen that the
finite-size effect is not severe for L = 9 with S/kB � 0.1.

We can see in Fig. 10(b) that the finite-size effect still exists
for U = 6 in the semimetal region. But the dimer formation
in a bond lifts degeneracy and thus lowers the entropy in the
strong coupling regime, as shown in Fig. 10(c) where U = 12.
Moreover, the cVBS correlation length is much larger than
the lattice size. As a result, the finite-size effect is weak in
the cVBS region. Hence the isoentropy curve demonstrating
Pomeranchuk cooling in Fig. 4 is a reasonable estimate in the
thermodynamic limit.
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FIG. 10. The finite-size dependence of entropy per particle of
the half-filled SU(6) Hubbard model with parameters (a) U = 0, (b)
U = 6, and (c) U = 12.

APPENDIX B: IMAGINARY PART OF THE
COMPRESSIBILITY

In our simulations, the Hubbard-Stratonovich transforma-
tion is performed in the density channel as below,

e
�τU

2 (nj −N)2 = 1

4

∑
l=±1

γj (l)eiηj (l)(nj −N), (B1)

where γ and η are two sets of parameters. According to
Ref. [22], in the cases of 2N = 2,4, and 6, the Ising fields

FIG. 11. The imaginary part of compressibility Im(κ) versus T

with different U and 2N : (a) SU(4) case with different U ; (b) SU(6)
case with different U ; (c) SU(6) case with U = 4; (d) SU(6) case
with U = 12.

can take values of

γ (±1) = −a(3 + a2) + d

d
,

γ (±2) = a(3 + a2) + d

d
,

η(±1) = ± cos−1

{
a + 2a3 + a5 + (a2 − 1)d

4

}
,

η(±2) = ± cos−1

{
a + 2a3 + a5 − (a2 − 1)d

4

}
,

where a = e−�τU/2, and d =
√

8 + a2(3 + a2)2.
Because the diagonal term is complex, the decomposed

fermion bilinear operators are no longer Hermitian. If all the
configurations are reached when performing the path integrals,
the Hermitian of the many-body Hamiltonian is recovered.
However, since the importance sampling is used in the Monte
Carlo integrations, the imaginary part of a physical quantity is
only statistically zero.

The compressibility κ(T ) is related to the global density-
density correlations rather than local on-site correlations. In
Fig. 11, we calculate the imaginary part of κ(T ) with different
values of T , U , and 2N . Im(κ) fluctuates around zero severely
in the low temperature regime. Furthermore, it is seen that
fluctuations turn to be increasingly severe when increasing the
value of 2N [see Figs. 11(a) and 11(b)] or the Hubbard U [see
Figs. 11(c) and 11(d)].

APPENDIX C: THE BEHAVIOR OF AVERAGE SIGN
IN THE MOTT REGION

The chemical potential is set to zero (at half filling) in
our DQMC simulations, which ensures the sign problem is
absent. We also test the average sign in the Mott region of the
SU(6) Hubbard model when the chemical potential μ deviates
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FIG. 12. The average sign as a function of T for various chemical
potentials at (a) U = 12 and (b) U = 14 in the SU(6) Hubbard model
on a honeycomb lattice with L = 9. Error bars are smaller than the
data points.

from zero (away from half filling). In this case, an extra
term Hμ = −μ

∑
i ni is added to the original Hamiltonian,

Eq. (1). As shown in Fig. 12, the average signs deviate quickly
from unity as the temperature decreases and the sign problem
becomes severe when temperatures are lower than T ∼ t ,
a temperature scale set by the numerical instability test in
Appendix B.

APPENDIX D: THE AF STRUCTURE FACTORS AND
NEAREST-NEIGHBOR SPIN-SPIN CORRELATIONS

The AF structure factors are defined as

SAF = 1

2L2

∑
i,j

(−1)i+j Sspin(i,j ). (D1)

As shown in Fig. 13, we simulate the AF structure factor
SAF of the SU(4) and SU(6) Hubbard models on a 2 × 9 × 9
honeycomb lattice. With decreasing temperatures, the SAF ’s
of the SU(2N ) (N = 2,3) Dirac fermions increase slowly and
saturate eventually when 2 � U/t � 6, while they increase
rapidly when 8 � U/t � 10.

In Fig. 14, the β dependence of the SU(6) AF structure
factor SAF with U/t = 14 are shown for different lattice sizes
from L = 3 to L = 15. SAF increases monotonically with
inverse temperature β. But SAF is size independent even at
low temperatures T/t ∼ 1/10, which indicates that the AF

FIG. 13. The AF structure factors SAF versus temperature T at
various values of U in the half-filled (a) SU(4) and (b) SU(6) Hubbard
models. The lattice size is L = 9. Error bars are smaller than the data
points.

FIG. 14. The AF structure factor SAF of the SU(6) Hubbard model
with U = 14 is plotted as a function of β for different lattice sizes
L. The dashed lines serve as a guide to the eye, and error bars are
smaller than the data points.

correlation length is smaller than lattice size L = 3. This
is another evidence that the long-range AF order is absent
in the half-filled SU(6) Hubbard model on a honeycomb
lattice.

The nearest-neighbor spin-spin correlations are defined as

Snn = 1

zL2

∑
i∈A,�ej

Sspin(i,i + �ej ), (D2)

where z is the coordination number. In Fig. 15, we present
the nearest-neighbor spin-spin correlations Snn in the half-
filled SU(4) and SU(6) Hubbard models. At high temperatures
T/t ∼ 10, |Snn| is independent of the Hubbard U , which shows
spin incoherence. In contrast, at low temperatures T/t ∼ 0.1,
increasing U enhances the nearest-neighbor AF correlations,
and thus |Snn| increases.

FIG. 15. The nearest-neighbor spin-spin correlation Snn versus
temperature T at various values of U in the half-filled (a) SU(4) and
(b) SU(6) Hubbard models. The lattice size is L = 9. Error bars are
smaller than the data points.
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[34] N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T.

Esslinger, R. Sensarma, D. Pekker, E. Altman, and E. Demler,
Phys. Rev. Lett. 104, 080401 (2010).
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