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Recently, cold atomic Fermi gases with the large magnetic dipolar interaction have been laser cooled down to
quantum degeneracy. Different from electric-dipoles which are classic vectors, atomic magnetic dipoles are
quantum-mechanical matrix operators proportional to the hyperfine-spin of atoms, thus provide rich
opportunities to investigate exotic many-body physics. Furthermore, unlike anisotropic electric dipolar
gases, unpolarized magnetic dipolar systems are isotropic under simultaneous spin-orbit rotation. These
features give rise to a robust mechanism for a novel pairing symmetry: orbital p-wave (L 5 1) spin triplet (S
5 1) pairing with total angular momentum of the Cooper pair J 5 1. This pairing is markedly different from
both the 3He-B phase in which J 5 0 and the 3He-A phase in which J is not conserved. It is also different from
the p-wave pairing in the single-component electric dipolar systems in which the spin degree of freedom is
frozen.

U
ltracold atomic and molecular systems with electric and magnetic dipolar interactions have become the
research focus in cold atom physics1–7. When dipole moments are aligned by external fields, dipolar
interactions exhibit the dr2{3z2 -type anisotropy. The anisotropic Bose-Einstein condensations of dipolar

bosons (e.g. 52Cr) have been observed8–11. For the fermionic electric dipolar systems,40K-87Rb has been cooled
down to nearly quantum-degeneracy3. Effects of the anisotropic electric dipolar interaction on the fermion many-
body physics have been extensively investigated. In the Fermi liquid theory, both the single particle properties and
collective excitations exhibit the dr2{3z2 anisotropy12–17. In the single-component Fermi systems, the leading order
Cooper pairing instability lies in the p-wave channel, which is the simplest one allowed by Pauli’s exclusion
principle. The anisotropy of the electric dipolar interaction selects the instability in the pz-channel, which is
slightly hybridized with other odd partial wave channels20–27. For two-component cases, the dipolar interaction
leads to anisotropic spin-triplet pairing, and its orbital partial wave is again in the pz-channel28–31. The triplet
pairing competes with the singlet pairing in the hybridized szdr2{3z2 -channel. The mixing between the singlet

and triplet pairings has a relative phase +
p

2
, which leads to a novel time-reversal symmetry breaking Cooper

pairing state29.
An important recent experimental progress is the laser cooling and trapping of magnetic dipolar fermions of

161Dy and 163Dy with large atomic magnetic moments (10mB)1,2. There are important differences between magnetic
and electric dipolar interactions. Electric dipole moments are essentially non-quantized classic vectors from the
mixing between different rotational eigenstates with opposite parities, which are induced by external electric
fields3,4, thus electric dipoles are frozen. In the absence of external fields, even though at each instant of time there
is a dipole moment of the heteronuclear molecule, it is averaged to zero at a long time scale. In contrast, magnetic
dipole moments of atoms are intrinsic, proportional to their hyper-fine spins with a Lande factor. Unpolarized
magnetic dipolar Fermi systems are available, in which dipoles are defrozen as non-commutative quantum
mechanical operators, thus lead to richer quantum spin physics of dipolar interactions. Furthermore, the mag-
netic dipolar interaction is actually isotropic in the unpolarized systems. It is invariant under simultaneous spin-
orbit rotations but not separate spin or orbit rotations. This spin-orbit coupling is different from usual single
particle one, but an interaction effect. It plays an important role in the Fermi liquid properties such as the
unconventional magnetic states and ferro-nematic states predicted by Fregoso et al18,19.

It is natural to expect that magnetic dipolar interaction brings novel pairing symmetries not studied in
condensed matter systems before. The systems of 161Dy and 163Dy are with a very large hyperfine spin of

F~
21
2

, thus their Cooper pairing problem is expected to be very challenging. As a first step, we study the simplest

case of spin-
1
2

, and find that the magnetic dipolar interaction provides a novel and robust mechanism to the p-

wave (L 5 1) spin triplet (S 5 1) Cooper pairing to the first order of interaction strength, which comes from the
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attractive part of the magnetic dipolar interaction. In comparison,
the p-wave triplet pairing in usual condensed matter systems, such as
3He32–34, is due to the spin-fluctuation mechanism, which is at the
second order of interaction strength (see Refs.35,36 for reviews). This
mechanism is based on strong ferromagnetic tendency from the
repulsive part of the 3He-3He interactions. Furthermore, the p-wave
triplet Cooper pairing symmetry patterns in magnetic dipolar sys-
tems are novel, which do not appear in 3He. The orbital and spin
angular momenta of the Cooper pair are entangled into the total
angular momentum J 5 1, which is denoted as the J-triplet channel
below. In contrast, in the 3He-B phase33, L and S are combined into J
5 0; and in the 3He-A phase, L and S are decoupled and J is not well-
defined32,34. There are two competing pairing possibilities in this J-
triplet channel with different values of Jz: the helical polar state (Jz 5

0) preserving time reversal (TR) symmetry, and the axial state (Jz 5

61) breaking TR symmetry. The helical polar state has point nodes
and gapless Dirac spectra, which is a time-reversal invariant general-
ization of the 3He-A phase with entangled spin and orbital degrees of
freedom. In addition to usual phonon modes, its Goldstone modes
contain the total angular momentum wave as entangled spin-orbital
modes.

Results
We begin with the magnetic dipolar interaction between spin-

1
2

fer-
mions

Vab,b0a0 ~rð Þ~
m2

r3
~Saa0

:~Sbb0{3 ~Saa0
:̂r

� �
~Sbb0

:̂r
� �� �

, ð1Þ

where~r is the relative displacement vector between two fermions; m is
the magnitude of the magnetic moment. Such an interaction is
invariant under the combined SU(2) spin rotation and SO(3) space
rotation. In other words, orbital angular momentum~L and spin~S are
not separately conserved, but the total angular momentum~J~~Lz~S
remains conserved. Its Fourier transformation reads19

Vab;b0a0 ~qð Þ~
4p
3

m2 3 ~Saa0
:q̂

� �
~Sbb0

:q̂
� �

{~Saa0
:~Sbb0

� �
: ð2Þ

The Hamiltonian in the second quantization form is written as

H~
X
~k,a

~k
� �

{mc

h i
c{a ~k
� �

ca
~k
� �

z
1

2V

X
~k,~k’,~q

Vab;b’a’
~k{~k’
� �

P{
ab
~k;~q
� �

Pb’a’
~k’;~q
� �

,

ð3Þ

where ~k
� �

~ k2= 2mð Þ; mc is the chemical potential;

Pb0a0
~k;~q
� �

~cb0 {~kz~q
� �

ca0
~kz~q
� �

is the pairing operator; the

Greek indices a, b, a9 and b9 refer to " and #; V is the volume of
the system. We define a dimensionless parameter characterizing the
interaction strength as the ratio between the characteristic inter-

action energy and the Fermi energy: l:Eint=EF~
2
3

m2mkf

p2 2 .

We next study the symmetry of the Cooper pairing in the presence
of Fermi surface, i.e., in the weak coupling theory. An important
feature of the magnetic dipolar interaction in Eq. (1) is that it
vanishes in the total spin singlet channel. Thus, we only need to study
the triplet pairing in odd orbital partial wave channels. Considering
uniform pairing states at the mean-field level, we set~q~0 in Eq. (3),

and define triplet pairing operators Ps
~k
� �

, which are eigen-operators

of~S1zz~S2z with eigenvalues sz 5 0, 61, respectively. More explicitly,

they are P0
~k
� �

~
1ffiffiffi
2
p P:;

~k
� �

zP;:
~k
� �h i

, P1
~k
� �

~P::
~k
� �

,

P{1
~k
� �

~P;;
~k
� �

. The pairing interaction of Eq. (3) reduces to

Hpair~
1

2V

X
~k,~k0,sz s0z

VT
sz s0z

~k;~k0
� �

P{
sz
~k
� �

Ps0z
~k0
� �n o

, ð4Þ

where

VT
sz s’z

~k;~k’
� �

~
1
2

X
abb’a’

1sz
1
2
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1
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 �

�
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1sz
1
2

a
1
2

b

				

 �

is the Clebsch-Gordan coefficient for two spin-
1
2

states

to form the spin triplet; and Vsz s0z
~k;~k0
� �

is an odd function of both~k

and~k0.
The decoupled mean-field Hamiltonian reads

Hmf ~
1

2V

X
~k

0Y{ ~k
� � j ~k

� �
I Dab

~k
� �

D�ba
~k
� �

{j ~k
� �

I

0
B@

1
CAY ~k

� �
, ð6Þ

where we only sum over half of the momentum space;

j ~k
� �

~ ~k
� �

{mch and mch is the chemical potential;

Y ~k
� �

~ c: ~k
� �

,c; ~k
� �

,c{: {~k
� �

,c{; {~k
� �� �T

; Dab is defined as

Dab~
P

sz 1sz
1
2

a
1
2

b

				

 �

� Dsz . Dsz satisfies the mean-field gap func-

tion as

Dsz
~k
� �

~
1
V

X
~k’,s’z

VT
sz s’z

~k;~k’
� �

Ps’z
~k’
� �			 			D E

~{

ð
d3k’

2pð Þ3
VT
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~k;~k’
� �

K ~k’
� �

{
1

2 k

� 
Ds’z

~k’
� �

,

ð7Þ

where K ~k0
� �

~tanh
b

2
Ei
~k0
� �� .

2Ei
~k0
� �h i

. The integral in Eq. (7)

is already normalized following the standard procedure20. For sim-
plicity, we use the Born approximation in Eq. (7) by employing the
bare interaction potential rather than the fully renormalized T-
matrix, which applies in the dilute limit of weak interactions. The
pairing symmetry, on which we are interested below, does not
depend on the details that how the integral of Eq. (7) is regularized
in momentum space. The Bogoliubov quasiparticle spectra become

E1,2
~k
� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

kzl2
1,2

~k
� �r

, where l2
1,2

~k
� �

are the eigenvalues of the

positive-definite Hermitian matrixD{ ~k
� �

D ~k
� �

. The free energy can

be calculated as

F~{
2
b

X
~k,i~1,2

ln 2 cosh
bE~k,i

2

� 
{

1
2V

X
~k,~k’,sz ,s’z

D�sz
~k
� �

VT,{1
sz s’z

~k;~k’
� �

Ds’z
~k
� �n o

,

ð8Þ

where VT,{1
sz s0z

~k;~k0
� �

is the inverse of the interaction matrix defined as

1
V

X
~k0,s0z

VT
sz ,s0z

~k,~k0
� �

VT,{1
s0z ,s00z

~k0;~k00
� �

~D~k,~k00Dsz ,s00z : ð9Þ

We next linearize Eq. (7) around Tc and perform the partial wave
analysis to determine the dominant pairing channel. Since the total
angular momentum is conserved, we can use J to classify the

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 392 | DOI: 10.1038/srep00392 2



eigen-gap functions denoted as wa,JJz
sz

~k
� �

. The index a is used to

distinguish different channels sharing the same value of J. wa,JJz
sz

~k
� �

satisfies

N0

ð
dVk0

4p
VT

sz s0z
~k;~k0
� �

wa;JJz
s0z

~k0
� �

~wa
J wa;JJz

sz
~k
� �

, ð10Þ

where N0~
mkf

p2 2 is the density of state at the Fermi surface; wa
j are

dimensionless eigenvalues;~k,~k0 are at the Fermi surface. Then Eq. (7)
is linearized into a set of decoupled equations

wa;JJz 1zwa
J ln 2ec �V

� ��
pkBTð Þ

� �� �
~0, ð11Þ

where �V is an energy scale at the order of the Fermi energy playing
the role of energy cut-off from the Fermi surface.

The decomposition of VT
sz s0z

~k;~k0
� �

into spherical harmonics can be
formulated as

N0

4p
VT

sz s0z
~k;~k0
� �

~
X

Lm,L0m0
VLmsz ;L0m0s0z Y�Lm Vkð ÞYL0m0 V~k0

� �
, ð12Þ

where L 5 L9 or L 5 L962, and L, L9 are odd numbers. The expres-
sions of the dimensionless matrix elements VLmsz ;L0m0s0z are lengthy
and will be presented elsewhere. By diagonalizing this matrix, we find
that the most negative eigenvalues is wJ51 5 23pl/4 lying in the
channel with J 5 L 5 1. All other negative eigenvalues are signifi-
cantly smaller. Therefore, dominate pairing symmetry is identified as
the J-triplet channel with L 5 S 5 1 in the weak coupling theory.
Following the standard method in Ref.20, the transition temperature

Tc is expressed as Tc<
2ec �V

p
e
{ 1

wJ~1j j. For a rough estimation of the order

of magnitude of Tc, we set the prefactor in the expression of Tc as Ef.
In order to understand why the J-triplet channel is selected by the

magnetic dipolar interaction, we present a heuristic picture based on
a two-body pairing problem in real space. Dipolar interaction has a
characteristic length scale adp 5 mm2/ 2 at which the kinetic energy
scale equals the interaction energy scale. We are not interested in
solving the radial equation but focus on the symmetry properties of
the angular solution, thus, the distance between two spins is taken
fixed at adp. We consider the lowest partial-wave, p-wave, channel
with L5 1. The 3 3 3 5 9 states (L5S5 1) are classified into three
sectors of J5 0, 1 and 2. In each channel of J, the interaction energies
are diagonalized as

E0~Edp, E1~{
1
2

Edp, E2~
1

10
Edp, ð13Þ

respectively, where Edp~m2
.

a3
dp. Only the total angular momentum

triplet sector with J5 1 supports bound states, thus is the dominant
pairing channel and is consistent with the pairing symmetry in the
weak-coupling theory.

This two-body picture applies in the strong coupling limit.
Although a complete study of the strong coupling problem is beyond
the scope of this paper, this result provides an intuitive picture to
understand pairing symmetry in the J-triplet sector from spin

configurations. We define that xm and pm V̂
� �

are eigenstates with

eigenvalues zero for operators êm
: ~S1z~S2
� �

and êm
:~L m~x,y,zð Þ,

which are the total spin and orbital angular momenta projected

along the em-direction. The J-triplet sector states are wm Vð Þ~
1ffiffiffi
2
p mnlxnpl Vð Þ with wm satisfying êm

:~J
� �

wm~0. For example,

wz V̂
� �

~
1ffiffiffi
2
p xxpy V̂

� �
{xypx V̂

� �h i

~

ffiffiffi
3
2

r
sin h aêr

		 �
1 aêr

		 �
2z bêr

			 E
1

bêr

			 E
2

n o
,

ð14Þ

where êr~x̂ cos wzŷ sin w and aer

		 �
and ber

			 E
are eigenstates of

êr
:~s with eigenvalues of 61. As depicted in Fig. 1 A, along the

equator where wz has the largest weight, two spins are parallel and
along r̂, thus the interaction is dominated by attraction. On the other
hand, the eigenstate of J 5 0 reads

w0 Vð Þ~xmpm Vð Þ~ 1ffiffiffi
2
p aVj i1 bVj i2z bVj i1 aVj i2
� �

, ð15Þ

where jaVæ and jbVæ are eigenstates of V̂:~s with eigenvalues 61. As
shown in Fig. 1 B, along any direction of V̂, two spins are anti-parallel
and longitudinal, thus the interaction is repulsive.

Let us come back to momentum space and study the competition
between three paring branches in the J-triplet channel under the
Ginzburg-Landau (GL) framework. We define

Dx
~k
� �

~
1ffiffiffi
2
p {D1

~k
� �

zD{1
~k
� �h i

,

Dy
~k
� �

~
iffiffiffi
2
p D1

~k
� �

zD{1
~k
� �h i

, Dz
~k
� �

~D0
~k
� �

:

ð16Þ

The bulk pairing order parameters are defined as Dm~
1
V

X
k

k̂mDm
~k
� �

, where no summation over m is assumed. We define pairing

parameters and their real and imaginary parts as the following 3-

vectors ~D~ Dx,Dy,Dz
� �

. The GL free energy is constructed to main-
tain the U(1) and SO(3) rotational symmetry as

F~a~D�:~Dzc1
~D�:~D
			 			2zc2

~D�|~D
			 			2, ð17Þ

where

a~N0 ln
T
Tc

� �
: ð18Þ

The sign of c2 determines two different pairing structures: Re~D Im~D
���

at c2 . 0, and Re~D\Im~D at c2 , 0, respectively. Using the analogy of
the spinor condensation of spin-1 bosons, the former is the polar
pairing state and the latter is the axial pairing state37–40.

For the polar pairing state, the order parameter configuration can
be conveniently denoted as~D~eiw Dj jẑ up to a U(1) phase and SO(3)-
rotation. This pairing carries the quantum number Jz 5 0. The

pairing matrix D
pl
ab~

1
2
Dj j kys1{kxs2

�
is2

� �
ab

reads

D
pl
ab~

1
2
Dj j

{ k̂yzik̂x

� �
0

0 k̂y{ik̂x

2
4

3
5: ð19Þ

Figure 1 | The spin configurations of the two-body states with a) J 5 1
and jz 5 0 and b) J 5 jz 5 0. The interactions are attractive in a) but

repulsive in b).
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It equivalents to a superposition of px+ipy orbital configurations for
spin-"" (##) pairs, respectively. Thus, this pairing state is helical. It is
a unitary pairing state because D̂{D̂ is proportional to a 232 identity
matrix. The Bogoliubov quasiparticle spectra are degenerate for two

different spin configurations as Epl
k,a~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

kz Dpl ~k
� �			 			2

r
with the

anisotropic gap function Dpl ~k
� �			 			2~ 1

4
Dj j2sin2 hk depicted in

Fig. 2. They exhibit Dirac cones at north and south poles with oppos-
ite chiralities for two spin configurations.

Similarly, the order parameter configuration in the axial pairing

state can be chosen as ~D~
1ffiffiffi
2
p eiw Dj j êxzîey

� �
up to the symmetry

transformation. This state carries the quantum number of Jz 5 1. The

pairing matrix Dax
ab~

1

2
ffiffiffi
2
p Dj j k̂z s1zis2ð Þzsz k̂xzik̂y

�h i
is2

n o
abtakes the form

Dax
ab~

ffiffiffi
2
p

2
Dj j

k̂z
1
2

k̂xzik̂y

� �
1
2

k̂x{ik̂y

� �
0

2
64

3
75: ð20Þ

This is a non-unitary pairing state since D{D~

Dj j2 1
2

1zk̂2
z

� �
zk̂z k̂:~s

� �� 
. The Bogoliubov quasiparticle spectra

have two non-degenerate branches with anisotropic dispersion rela-

tions as Eax
1,2

~k
� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

kz Dax
+
~k
� �			 			2

r
. The angular gap distribution

Dax
+
~k
� �			 			2~ 1

8
Dj j2 1+ cos hkð Þ2 is depicted in Fig. 2. Each of branch

1 and 2 exhibits one node at north pole and south pole, respectively.
Around the nodal region, the dispersion simplifies into

E1,2
~k
� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

f kz+kf
� �2

z
1

32
Dj j2 kjj

�
kf

� �4
r

, which is quadratic in

the transverse momentum kE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xzk2
y

q
.

At the mean-field level, the helical polar pairing state is more stable
than the axial state. Actually, this conclusion is not so obvious as in
the case of 3He-B phase, where the isotropic gap function is the most
stable among all the possible gap functions33. Here, the gap functions
are anisotropic in both the polar and helical pairing phases. We need
to compare them by calculating their free energies in Eq. (8). The
second term contributes the same to both pairing phases. Thus, the
first term determines the difference in free energies. Let us define the
ratio between angular integrals of the free energy kernels in Eq. (8) of
the two phases as

y l1, l2ð Þ~

Ð
dVk 2 ln 2 cosh

b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

kz Dpl ~k
� �			 			2

r" #

Ð
dVk

P
+ ln 2 cosh

b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

kz Dax
+
~k
� �			 			2

r" # , ð21Þ

where l1~
1

b Dj j, l2~
1

b jkj j. y(l1, l2) is numerically plotted in Fig. 3.

For arbitrary values of b, jk, and jDj, y is always larger than 1.
Therefore, the polar state is favored more than the axial state. This
can be understood from the convexity of the nonlinear term in

Eq. (8), which favors isotropic angular distributions of D ~k
� �			 			242.

Although neither gap function of these two states is absolutely iso-
tropic as in the 3He-B phase, the polar gap function is more isotropic
from Fig. 2 and thus is favored. However, we need to bear in mind
that we cannot rule out the possibility that certain strong coupling
effects can stabilize the axial state. In fact, the 3He-A phase can be
stabilized under the spin feedback mechanism35, which is a higher
order effect in terms of interaction strength.

Next we discuss the classification of Goldstone modes and vortices
in these two states. In the helical polar state, the remaining symmet-
ries are SOJ(2) 3 Z2 as well as parity and time-reversal (TR), where Z2

means the combined operation of rotation p around any axis in the
xy-plane and a flip of the pairing phase by p. The Goldstone manifold
is

SOJ 3ð Þ|Uc 1ð Þ½ �= SOJ 2ð Þ6Z2½ �~ S2
J |Uc 1ð Þ

� ��
Z2: ð22Þ

The Goldstone modes include the phase phonon mode and two
branches of spin-orbital modes. Vortices in this phase can be clas-
sified into the usual integer vortices in the phase sector and half-
quantum vortices combined with p-disclination of the orientation of
~D. In the axial state, the rotation around z-axis generates a shift of the
pairing phase, which can be canceled by a Uc(1) transformation, thus,
the remaining symmetry is SOJz{w(2). The Goldstone manifold is
S2 3 Uc(1). Only integer vortices exist.

Discussions
In summary, we have found that the magnetic dipolar interaction
provides a robust mechanism at first order in the interaction strength
for a novel p-wave (L 5 1) spin triplet (S 5 1) Cooper pairing state, in
which the total angular momentum of the Cooper pair is J 5 1. This is
a novel pairing pattern which does not appear in 3He, and, to our
knowledge, neither in any other condensed matter systems. These
pairing states include the TR invariant helical polar pairing state and

Figure 2 | The angular distribution of the gap function D ~k
� �			 			2 v.s. coshk

in the helical polar pairing state (the red line) and the axial pairing state

(the black line).

Figure 3 | The ratio of the angular integrals of the free energy kernels

y
1

b Dj j ,
1

b jj j

� �
, which is always larger than 1. This means that the polar

pairing is favored at the mean-field level.
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the TR breaking axial pairing state, both of which are distinct from
the familiar 3He-A and B phases.

Many interesting questions are open for further exploration,
including the topological properties of these pairing states, vortices,
spin textures, and spectra of collective excitations. The above theory

only applies for spin-
1
2

systems, in which the magnetic dipolar inter-

action is too small. For the pairing symmetry in a magnetic dipolar
system with a large spin S, our preliminary results show that the basic
features of the J-triplet pairing remains. The spins of two fermions
are parallel forming Stot 5 2S with orbital partial-wave L 5 1, and the
total J 5 2S. In the current experiments in Ref.41, the highest attain-

able density reaches 431013 cm21 for 161Dy atoms with S~
21
2

. The

corresponding dipolar energy is Eint < 2 nK and the Fermi energy for
unpolarized gases Ef < 13.6 nK, and thus l5 Eint/Ef < 0.15. If we use
the same formula of wJ51 above for an estimation of the most negative
eigenvalue, we arrive at Tc/Tf < 0.06, which means that Tc < 0.8 nK.
Although it is still slightly below the lower limit of the accessible
temperature in current experiments, we expect that further increase
of fermions density, say, in optical lattices will greatly increase Tc.

Method
We have used the methods of the symmetry analysis, strong coupling analysis, mean-
field theory, partial-wave analysis, and the Ginzburg-Landau free energy, which have
been explained in Sec. I.
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10. Lahaye, T., Metz, J., Koch, T., Fröhlich, B., Griesmaier, A. & Pfau, T. A purely

dipolar quantum gas. 21st International Conference on Atomic Physics, 160.
World Scientific, (2009).

11. Menotti, C., Lewenstein, M., Lahaye, T. & Pfau, T. Dipolar interaction in ultra-
cold atomic gases. Dynamics and Thermodynamics of Systems with Long Range
Interactions: Theory and Experiments, vol. 970, 332–361 (2008).

12. Sogo, T., He, L., Miyakawa, T., Yi, S., Lu, H. & Pu, H. Dynamical properties of
dipolar fermi gases. New J. Phys. 11, 055017 (2009).

13. Miyakawa, T., Sogo, T. & Pu, H. Phase-space deformation of a trapped dipolar
fermi gas. Phys. Rev. A 77, 061603 (2008).

14. Ronen, S. & Bohn, J. L. Zero sound in dipolar fermi gases. Phys. Rev. A 81, 033601
(2010).

15. Chan, C. K., Wu, C., Lee, W. C. & Sarma, S. D. Anisotropic-fermi-liquid theory of
ultracold fermionic polar molecules: Landau parameters and collective modes.
Phys. Rev. A 81, 023602 (2010).

16. Fregoso, B. M., Sun, K., Fradkin, E. & Lev, B. L. Biaxial nematic phases in ultracold
dipolar fermi gases. New J. Phys. 11, 103003 (2009).

17. Lin, C., Zhao, E. & Liu, W. V. Liquid crystal phases of ultracold dipolar fermions
on a lattice. Phys. Rev. B 81, 045115 (2010).

18. Fregoso, B. M. & Fradkin, E. Unconventional magnetism in imbalanced fermi
systems with magnetic dipolar interactions. Phys. Rev. B 81, 214443 (2010).

19. Fregoso, B. M. & Fradkin, E. Ferronematic ground state of the dilute dipolar fermi
gas. Phys. Rev. Lett. 103, 205301 (2009).

20. Baranov, M. A., Mar’enko, M. S., Rychkov, V. S. & Shlyapnikov, G. V. Superfluid
pairing in a polarized dipolar fermi gas. Phys. Rev. A 66, 013606 (2002).

21. Baranov, M. A., Dobrek, L. & Lewenstein, M. Superfluidity of trapped dipolar
fermi gases. Phys. Rev. Lett. 92, 250403 (2004).

22. Baranov, M. A. Theoretical progress in many-body physics with ultracold dipolar
gases. Physics Reports 464, 71–111 (2008).

23. You, L. & Marinescu, M. Prospects for p-wave paired bardeen-cooper-schrieffer
states of fermionic atoms. Phys. Rev. A 60, 2324 (1999).

24. Bruun, G. M. & Taylor, E. Quantum phases of a two-dimensional dipolar fermi
gas. Phys. Rev. Lett. 101, 245301 (2008).

25. Levinsen, J., Cooper, N. R. & Shlyapnikov, G. V. Topological px 1 ipy superfluid
phase of fermionic polar molecules. Phys. Rev. A 84, 013603 (2011).

26. Potter, A. C., Berg, E., Wang, D. W., Halperin, B. I. & Demler, E. Superfluidity and
Dimerization in a Multilayered System of Fermionic Polar Molecules. Phys. Rev.
Lett. 105, 220406 (2010).

27. Lutchyn, R. M., Rossi, E. & Das Sarma, S. Spontaneous interlayer superfluidity in
bilayer systems of cold polar molecules. Phys. Rev. A 82, 061604 (2010).

28. Samokhin, K. V. & Mar’Enko, M. S. Nonuniform mixed-parity superfluid state in
fermi gases. Phys. Rev. Lett. 97, 197003 (2006).

29. Wu, C. & Hirsch, J. E. Mixed triplet and singlet pairing in ultracold
multicomponent fermion systems with dipolar interactions. Phys. Rev. B 81,
020508 (2010).

30. Shi, T., Zhang, J. N., Sun, C. P. & Yi, S. Singlet and triplet bcs pairs in a gas of two-
species fermionic polar molecules. arXiv: 0910.4051 (2009).

31. Kain, B. & Ling, H. Y. Singlet and triplet superfluid competition in a mixture of
two-component fermi and one-component dipolar bose gases. Phys. Rev. A 83,
061603 (2011).

32. Anderson, P. W. & Morel, P. Generalized bardeen-cooper-schrieffer states and the
proposed low-temperature phase of liquid He3. Phys. Rev. 123, 1911 (1961).

33. Balian, R. & Werthamer, N. R. Superconductivity with pairs in a relative p wave.
Phys. Rev. 131, 1553 (1963).

34. Brinkman, W. F., Serene, J. W. & Anderson, P. W. Spin-fluctuation stabilization of
anisotropic superfluid states. Phys. Rev. A 10, 2386 (1974).

35. Leggett, T. A theoretical description of the new phases of liquid 3He. Rev. Mod.
Phys. 47, 331 (1975).

36. Volovik, G. E. The Universe in a Helium droplet. Oxford University Press
(2009).

37. Ohmi, T. & Machida, K. Bose-Einstein condensation with internal degrees of
freedom in alkali atom gases J. Phys. Soc. Jpn. 67, 1822 (1998).

38. Ho, T. L. Spinor bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745
(1998).

39. Zhou, F. Quantum spin nematic states in bose einstein condensates. Int. J. Mod.
Phys. B 17, 2643–2698 (2003).

40. Demler, E. & Zhou, F. Spinor bosonic atoms in optical lattices: symmetry breaking
and fractionalization. Phys. Rev. Lett. 88, 163001 (2002).

41. Lu, M., Burdick, N. Q. & Lev, B. L. Quantum degenerate dipolar Fermi gas.
arXiv:1202.4444.

42. Cheng, M., Sun, K., Galitski, V. & Das Sarma, S. Stable topological
superconductivity in a family of two-dimensional fermion models. Phys. Rev. B
81, 024504 (2010).

Acknowledgement
C. W. thanks J. E. Hirsch for helpful discussions. Y. L and C. W. are supported by NSF under
No. DMR-1105945, and the AFOSR YIP program.

Author contributions
Both authors participated in the research and in the writing of the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Li, Y. & Wu, C. The J-triplet Cooper pairing with magnetic dipolar
interactions. Sci. Rep. 2, 392; DOI:10.1038/srep00392 (2012).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 392 | DOI: 10.1038/srep00392 5

http://creativecommons.org/licenses/by-nc-sa/3.0

	Title
	Figure 1 The spin configurations of the two-body states with a) J = 1 and jz = 0 and b) J = jz = 0.
	Figure 2 The angular distribution of the gap function $\left| {\Delta \left( {\vec k} \right)} \right|^2 $ v.s.
	Figure 3 The ratio of the angular integrals of the free energy kernels $\bf y\left( \displaystyle{{\bfr 1 \over {\bibeta \left| \bDelta \right|}}\comma {\bfr 1 \over {\bibeta \left| \bixi \right|}}} \right)$, which is always larger than 1.
	References

