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Non-Abelian Berry phase and Chern numbers in higher spin-pairing condensates
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We show that the non-Abelian Berry phase emerges naturally is-tfeee and spin quintet pairing channel
of spin-3/2 fermions. The topological structure of this pairing condensate is characterized by the second Chern
number. This topological structure can be realized in ultracold atomic systems and in solid state systems with
at least two Kramers doublets.
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I. INTRODUCTION pairing condensate of the underlying spin-3/2 fermions. The
most general Hubbard model of spin-3/2 fermions has re-
Topological gauge structure and Berry's pHaply an  cently been introduced and investigated extensively byetVu
increasingly important role in condensed matter physics. Thal.,?° who found that the model always has a generi¢ 80O
quantized Hall conductance can be deeply understood isymmetry in the spin sector. Building on this work, we show
terms of the first Chern clags.The fractional quantum Hall here that the fermionic guasiparticles of the quintet pairing
effect (FQHE) can be fundamentally described by ti€¢l)  condensate can be described by the second Hopf map. Simi-
topological Chern-Simons gauge thebryThe effective lar to the SDW+BCS system investigated by Demler and
action  for  ferromagnets and  one-dimensional Zhang!® the quasiparticles of the quintet pairing condensate
antiferromagnefs’ contains Berry phase terms that funda- also accumulate an $P) holonomy. The quintet pairing
mentally determine the low energy dynamics. More recentlycondensate can be experimentally realized in a number of
Berry’s phase associated with the BCS quasiparticles in paisystems. Cold atoms with spin-3/2 in the continuum or on
ing condensates has also been studied extensivdly. the optical lattice can be accurately described by the model
While Abelian Berry’s phase has found its stage in con-of local contact interactiod U, and U,. These interaction
densed matter systems, people continue to have an interestparameters can be experimentally tuned over a wide range,
seeking the physical realization of non-Abelian Berry’'sincluding the range for stable quintet condensates. Effective
phase'l12 Recently, the non-Abelian S®) (Refs. 13-1%  spin-3/2 fermions can also be realized in solid state systems
Berry's phasgor holonomy, to be precigdias been system- with at least two Kramers doublets; for example, in bands
atically investigated in the context of condensed matter sysformed by R/, orbitals.
tems. Demler and Zhaf investigated the quasiparticle In the rest of this paper, we shall use spin-1/2 system to
wave functions in the unified §6) theory of antiferromag- be short for the spin-1/2 superflufie-A and spin-3/2 sys-
netism and superconductivity, and found that the spin densityem for thes-wave spin-3/2 superconductor in the quintet
wave(SDW) and the BCS quasiparticle states accumulate aghannel. The repeated indices are assumably summed
SU(2) Berry’s phasegor holonomy when the order param- throughout this paper.
eter returns to itself after an adiabatic circuit. Zhang and
Hu'” found a higher dimensional generalization of the quan-

tum Hall effect based on a topologically nontrivial &Y Il. SUPERFLUID °He-A

background gauge field. Rather surprisingly, the non-Abelian A. Goldstone manifold and the first Hopf map

SU(2) holonomy also found its deep application in the tech- - _
nologically relevant field of quantum spintroni&t® All The general form of the equilibrium order parameter in

these condensed matter applications are underpinned bythe *He-A phase can be written fas

common mathematical framework, which naturally general-

izes_the_ conc_ept of Ber_ry’hl(l) phase fa_ctor. This class of (A(K)4) =Akaa(é|(l) + iéi(Z))1 (1)
applications is topologically characterized by the second

Chern class anql th? second Hopf map, and applies to ferm\i/Y/here the spin indexa) and orbital indexi) run from 1 to
onic systems with time reversal invariance.

; ; . o . 3. A is a complex number that contains the information of
In this paper, we investigate the nontrivial topological

structures associated with the higher spin condensates. \Wae magnitude and the(1) phased is the normal vector of
first review the momentum space gauge structure of théhe plane to which the spin direction is restricted. The or-
spin-1 condensate, namely the A phaséréé. As it has been thogonal vectorsed, &2, and |=&® x&? form a local
pointed ouf the momentum space gauge structure of thgphysical coordinate frame.

pairing condensate is given by that of the t'Hooft-Polyakov The Goldstone manifold of the order parameter is given
monopole. We then investigate the system of spigiintey  by?
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U(1) ® SOV ® SO3)® The Berry phase connectigBPC) is defined by the dif-
Ry=G/H = SO2)® @ U(1)combinedg, zcombined ferential change of states projecting to themselves. In this
2 paper, it will be illustrated by using the state with a positive
=S ® SO3) elativdZo- (2) eigenvalue. BPC obtained from the state with a negative ei-

i A genvalue is simply the complex conjugate to the one with the
Here, S@3) elaiive denotes such rotations about the &xisat  gjgenvalue of a different sign. The BPC and its field strength
lead to new degenerate states that are relative towards gauggn be obtained, respectively, as

transformation$. The U(1)c°mbined comes from the fact that
the A-phase state is invariant under combined . e0c
transformatiof of the gauge transformation with the param- Aa=— 'Aaz'
eter ¢ from the U(1) group and the orbital rotation @&,
&2, and| about axisl by the same angle. The zsomPined
denotes the combined operation tlat —-d, A, — —A,. This A _ 2 ad_ 2 AB dpe_ 1~
combined discrete symmetry leads to the existence of half- be ™ oA = At EadepfAc = dZ'Ebcededa' 9
quantum vortice§ Around a half-quantum vortex, the vector
field d is continuously rotated intod; and theU(1) phase of
A, continuously evolves from 0 te- when the order param- 1 d
eter returns to itself after an adiabatic circuit. B2= EeachECde: - d—ez‘ (10)
If we fix the local orthogonal frame in an arbitrary direc-

tion and adiabatically move the quasiparticle around a lin€This is aU(1) magnetic-monopole-like field in thé-space.
defect of a half-quantum vortex, the trajectory of the order ; P
parameter is a C(Iqosed loop on tB& Z spélce gn the other It emerges when_there_: are line defe_cts in theeld, e.g.,
hand. the d f freed : tﬁ . et half-quantum vortices in the superfluid He-3A phase. If we
d_an » the Iegr_eesfo ret?[hom g. € _quaTlpaLthé WO& transport the spin-1/2 fermion adiabatically around the vor-

Imensional spingriorm a three-dimensional sp an tex, the electronic wavefunction gains the phase accumulated

the trajectory of the quasiparticle @& is not closed. This ~ ) )
adiabatic evolution defines the following map: due to thed-field, as we discussed previously. Moreover, the
first Chern number can be computed easily, as

d
Ag = 6abcgb ) (8)

and

The gauge invariant magnetic field can be defined as

S Sz, (3) 1
In the topological terminology, Eq3) is determined by the Ci= ZTgSB -dS=-1. 1y
third homopotic group denoted hy,(S?/Z,). Due to a theo-
rem in the Homopoty theor} This is the famous t'Hooft-Polyakov monopo(@PM).824
Different from the Dirac monopole, the gauge field of the
m(SY2Zy) = m(S), for k=2. (4)  TPM is non-Abelian and finite everywhere ov&Z,, while

Equation(3) is homopotically equivalent to the first Hopf the Dirac magnetic monopole is Abelian and has a singular-

mapS®— <, that isU(1) Berry phase in the FQHE and other ity _strlng. There is a dee_p and direct relat|0_n between them,

nanostructures in the semiconduct&tg3 which can be achieved by a singular gauge
transformatior?>28

The present S@3) Berry phase defines a $8 gauge

B. Berry connection, first Chern number, t' Hooft-Polyakov theory onS?/Z,. Using the covariant derivative,=d,+A,,
monopole, and Dirac monopole the SA3) generators in the presence of t'Hooft-Polyakov
If we define the spinor as monopole can be written &
Lap=Agp—id?f,, a=1,2,3, (12

t_ o+t
W = (Cy 1/2:Ck ~1/2 Ck, 1/2:Ck-1/2)» (5

, o L where A gp=-id,D,+idyD, and f,=-iF5,0./2. Definingl,
the mean field Hamiltonian fotHe-A is given by =%€abc|-bo one finds easily thl,, I, ]=ie.pJ ., satisfying the

! SQ(3) algebra. Using Eq48) and(9), one can show

H=2 WiHWY,, (6)
“ Lap= Lg%) + eabc$1 (13
with 2
eo® A where L© is the orbital angular momentum, defined by
Hk=( k,r K 0), (7) L;Og:—ida&bﬂdbﬁa. Define?®
Ay — o
~ _ . V0350,
where A =-A,d,0?R and R=-id?. ¢ is the kinetic energy V=exp '\,ﬂ , (14)
‘ 3

on the lattices referenced from the Fermi surface and the
summation of momenturkis over half of the Brillouin zone where o,,=€,pb0./2 and cosd=ds/d. One can perform a
to avoid the double counting. Here? is the 2x 2 identity ~ singular S@3) gauge transformation oh,, such thatJ,,
matrix ando™?2 are Pauli matrices. =VLV', where
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terestingly, the spin S(2) singlet and quintet channel inter-

. . 03
e g Cury (15 action can also be interpreted as (SDgroup’s singlet and
five-vector representations.
d o The Cooper pair structures have also been studied in spin-
J,3=—id,d5+idsd, — €,,— =2 (16)  3/2 systent®3! The singlet and quintet pairing channel op-
d+d; 2 erators are described by
with u,v=1,2. ¢,, is the antisymmetry tensor, which has 1
only one componenté;,=1 in this case. It is obvious that 7'(r) = —cl(r)RaﬁcL(r),
J,.,=J12 forms theU(1) generator orf?/Z,. From the defi- 2
nition of Eq.(12), one can extract theJ(1) BPC regardless _
=i
of the unnecessary;/2, as X;(f) - ?cl(r)(l"aR)ch;,(r),
. d, _
& =" IE‘”d(d +dy)’ a3=0, (17) wherel are the S@) gamma matrices that take the form
and the finiteU(1) field strength ove*/Z, as F1-< 0 il ) rie (a’i 0 ) F5-< 0 -l )
“\-it o)t " \o -¢/) " \-1 0o/
Fan= ifabcd_g- (18 (19

i ; by —  sab

We should notice that the singular gauge transformatiorisatisfying the Clifford algebrgI'®, I"}=25". The S@5)

we used has a singularity string along the negatiaxis. ~ charge conjugate matri is given by
Therefore, while the covariant $8) BPC is finite over the ( 0 i¢72>

whole d-field, theU(1) BPC has a singularity string that is R=
reflected through the transformation. This transformation is
only valid on the northern hemisphere including the equatoiThe quintet pairing structure is spanned by the five polarlike
of the %/ Z,. One is able to choose another gauge that has theperatorsy! s, whose expectation value has a five-vector
singularity along the positive axis to describe the transfor- and a phase structure dse/®. The Goldstone manifold for
mation on the southern hemisphere. In the overlap regiorthe quintet pairing is
the two gauge connections should be connected by a gauge
transformatiors® Ruo= SA5)s® SAB3)L ® U(1)
The role of this singular gauge transformation is very in- 312 S04);® SO3). ® Z,
triguing. We can view the covariant $8) gauge potential
A; in Eg.(8) as a vectod, pointing in the isospin space. The
singular gauge transformation is nothing but the rotation o
the spin vector frond, to d;. Therefore, the invariant sub-
group of S@3) emerges from the isometry group of the
equator ofS?/Z,, which is U(1). This mechanism accounts
for the appearance of tHg(1) Berry phase in this problem.
As a result, the S@) Berry phase in this system is essen- S — SYz,, (22
tially equivalent to theJ(1) Berry phase.

=S'e U(1)/Z,, (21)

where theZ, symmetry comes from the combined operations
Paﬁ_dav‘ﬁ_’ G+

Because the four-component spinor forms the seven-
dimensional sphere, similar to the spin-1/2 case, the adia-
batic transportation of the quasiparticle around a half-
quantum vortex in our spin-3/2 system defines a map

which is homopotically equivalent to the second Hopf map,
that is, S’ — S*.

. ssWAVE QUINTET PAIRING CONDENSATE
IN SPIN-3/2 SYSTEM B. Berry connection, second Chern number, SO(4) monopole,

) . and Yang monopole
A. Goldstein manifold and the second Hopf map

. . . Let us introduce the spinor
Another candidate for nontrivial gauge structures is the P

spin-3/2 fermionic system with contact interaction, in which W = (¢/ ,.,,c} 1 /5Cl _1/5Cl 2/ C i 3726k 1/2:Cok ~1/2:C-k -312) »

an exact S(b) symmetry was identified recenfl§.lt may ’ ' ' ’ ' ' ’ ' 23)

be studied in the ultracold atomic systems, such’Bs,

1%Cs, ¥Ba, 'Ba. The four-component spinor wherec/ is the creation operator of an electron with the spin
(Ca/2:C1/2,C_1/2,C-3/2) " forms the spinor representations of the componentr and momentunk. The mean field Hamiltonian
SU(4) group which is the unitary transformation of the four- can be written as
component complex spinor. The kinetic energy term has ex-

plicit SU(4) symmetry. However, the-wave contact interac-

tion term breaks the S4) symmetry to S@6). Because of

the sswave scattering, there are only the singlet and quintet

channels, as required by the Pauli’s exclusion principle. Inwith

!

H=2, VIHW,, (24)
k

214512-3



CHERN, CHEN, WU, HU, AND ZHANG

el )

ekFO
A

Ay

25
—el® (25)

whereg, is the kinetic energy on the lattices referenced from

the Fermi surfaced,=—-A,d,I"™R while Ay contains the mag-
nitude and the phase of the superconducting order paramet
The momentunk is summed only over half of the Brillouin
zone to avoid the double counting. The subsaiptins from

1 to 5.d, forms a four-dimensional sphe@. I'° is the 4

X 4 identity matrix, and™@ are given by Eq(19). The eigen-
values of Eq(25) are

2
+]Ay
and their corresponding eigenvectors are

1 (Ex+ &d]a)
2

Afle)
f

= +E= +\, (26)

Yo (k) = ) (27)

)

V(Ex+ €)%+ A

1
.
V(E,+ ek)z + |A|2

where|a) are SU4) spinors.

Ayfa)

28
Etel) P

o (K) =

We are interested in the system with the presence of half-

quantum vortices. The formation of this kind of vortex is
very similar to the ones in the spin-1/2 system. If we trans-
port the spin-3/2 fermion adiabatically around one of them,

a nontrivial phase is accumulated due to dHield. The BPC

and the covariant field strength can be obtained, respectively,

by

— _d I"Ca

70 a=1,2345

(29)

a

and

I:abc: - (30)

i

@(darbc +dpl%@+ dgI20),
whereI'®*=(1/4i)[I"?,T'®] making up of the S() genera-
tors. Similar non-Abelian gauge structures also appeared
the pseudoparticle field in high dimensiois3* Instead of

the first Chern number, we have the nonvanishing second

Chern number

C, (31

1
=- 96072.(!5 dQqTr(FapdFand =1,
whered(); denotes the integration over the angular part of,
d,. The field strength onS', f,,=[D,,Dp]=dAr—dAs
+[A4,A,], can be obtained as

1
fab:_l

i d_z Pab,chCdr (32

where Pab,cd= %(5ac5bd_ 5ad5bc+ 5addbdc_ é\bddadc_ 5acdbdd
+0pdady). Papcq IS @ 10X 10 matrix because and b are
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which is dual toF 4. by Gap=€xpcadanc->* Then, one can
show

1 d
fap= EfabcdeECGde- (33
Hecause of the projection operatBg, .4 in f,, the funda-
mental degrees of freedom of the gauge structure in this
problem are not S®) but SQ4), because S@) has six
generators. We shall show that it is able to make a route from
fap to the S@4) gauge field strength using a singular gauge
transformation. Similar to the analysis in the second section,
the transformation operator in this 8) case has the fol-
lowing form:

_OT°Hd
U=eXp |—&/— ’ /-L:1;2|314| (34)
\"dz - d5
where cosd=ds/d. Equation(29) then becomes
=i
a,=———x*d, =1,2,3,4, 35
= dd+do) o M (395
a; =0, (36)
where3, ,, are the SO4) generators in thé,0 @ (0,3) rep-
resentatlon which have the form
. g'i
Ty O
S = : (37
. a'i
0 7wy,

where 7),,= €,,4% 8,64, 8,84, is the tHooft symbol, and
p andv run from 1 to 4. In this reducible representation of
the SA4) gauge group, one can easily distillate the(3U
ingredients because $O=SU(2)® SU(2). The self-dual
SU(2) gauge field is given by

in

A= a9 u=123.4
72 d(d+d5)77p,yy 1 Mm=41,£,9,4,

as=0. (38)

Similar to the spin-1/2 system, we obtain the (80OBPC,
WhICh is only defined on the northern hemisphere with the
equator. The singularity string along the negatvaxis in-
herits from the singular gauge transformation. The role of the
singular gauge transformation kican be also interpreted as
the rotation of a five-dimensional vector from an arbitrary
direction d, to ds in the five-dimensional isospin space.
Therefore, the invariant subgroup is the isometry group of
the equatorS®/Z;, which is S@4). Surprisingly, the repre-
sentation we achieve in 39 gauge theory is the reducible

antisymmetric as well as andd. Similar to the projection (2,0@®(0,3), which is the direct sum of two S@) gauge
operators,,—@,8, in QED, P,pq is the transverse projec- theory. Thus the S(2) Berry phase naturally arises in this
tion operator from ten-dimensional space to six-dimensionasystem.

space, satisfyingl,P,,.4=0. The relation betweeR,,. and
ordinary field strengti,, can be revealed if we defing,,,

21451

This SU?2) nature of the Berry phase in the spin-3/2 sys-
tem is manifested if we choose a special spiaorsuch that
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Ay|ay=|Ay|e %), which is studied by Demler and across between the finite gauge connection and the one with
Zhang® In this representationja) is not only a SW4) singularity is constructed by the singular gauge transforma-
spinors but also a S@G) one. The BPC is then given by tion, which can only be defined patch by patch in thepace
. . . as well®® The singular gauge transformation also bear with
AP = (gl ol = (] B (39 some physical meaning. It can be understood as the rotation
in the spin(isospin space, namely,. When the spin(iso-
spin) points to the north pole, the invariant subgroup be-
comes the isometry group of the equator. When it is rotated

This is exactly the S(2) holonomy in the context of
Demler and Zhané® The special choice of the spindis) is

equivalent to fixingd,=ds in our notion. by the gauge transformation, the gauge structure becomes
finite and covariant over the whotéspace.
IV. CONCLUSION AND DISCUSSION To experimentally manifest this topological effect, the

. spin-3/2 ultracold atomic systems may serve as a promising

In summary, we found that the $2) non-Abelian Berry  candidate. It may also shed some light on measuring the
phase emerges naturally in quintet condensates of spin-3/gacond Chern number, which has not been revealed by any
fermions. The underlying algebraic structures for fite irystem so far. Furthermore, our calculation can also be gen-

and the spin-3/2 system are the first and the second HORfjized to consider the spihsuperconductors in which the
maps, respectively. The Chern numbers for both cases wetg

obtained in a standard manner. In the previous case, only the
first Chern number is nonvanishing, while in the later case,
only second Chern number is nonzero. Both systems appear
to havefinite gauge potential, which means that the BPC can  This work was supported by the NSF under Grant No.
be defined covariantly everywhere over théeld. However, DMR-0342832 and the US Department of Energy, Office of
the correspondindJ(1) and SU2) gauge connections can Basic Energy Sciences under Contract No. DE-ACO03-
only be defined patch by patch in tlilespace. The bridge 76SF00515.

gebraic structure is suggested to be the third Hopf #hap.
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