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We show that the non-Abelian Berry phase emerges naturally in thes-wave and spin quintet pairing channel
of spin-3/2 fermions. The topological structure of this pairing condensate is characterized by the second Chern
number. This topological structure can be realized in ultracold atomic systems and in solid state systems with
at least two Kramers doublets.
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I. INTRODUCTION

Topological gauge structure and Berry’s phase1 play an
increasingly important role in condensed matter physics. The
quantized Hall conductance can be deeply understood in
terms of the first Chern class.2,3 The fractional quantum Hall
effect (FQHE) can be fundamentally described by theUs1d
topological Chern-Simons gauge theory.4 The effective
action for ferromagnets5 and one-dimensional
antiferromagnets6,7 contains Berry phase terms that funda-
mentally determine the low energy dynamics. More recently,
Berry’s phase associated with the BCS quasiparticles in pair-
ing condensates has also been studied extensively.8–10

While Abelian Berry’s phase has found its stage in con-
densed matter systems, people continue to have an interest in
seeking the physical realization of non-Abelian Berry’s
phase.11,12 Recently, the non-Abelian SU(2) (Refs. 13–15)
Berry’s phase(or holonomy, to be precise) has been system-
atically investigated in the context of condensed matter sys-
tems. Demler and Zhang16 investigated the quasiparticle
wave functions in the unified SO(5) theory of antiferromag-
netism and superconductivity, and found that the spin density
wave(SDW) and the BCS quasiparticle states accumulate an
SU(2) Berry’s phase(or holonomy) when the order param-
eter returns to itself after an adiabatic circuit. Zhang and
Hu17 found a higher dimensional generalization of the quan-
tum Hall effect based on a topologically nontrivial SU(2)
background gauge field. Rather surprisingly, the non-Abelian
SUs2d holonomy also found its deep application in the tech-
nologically relevant field of quantum spintronics.18,19 All
these condensed matter applications are underpinned by a
common mathematical framework, which naturally general-
izes the concept of Berry’sUs1d phase factor. This class of
applications is topologically characterized by the second
Chern class and the second Hopf map, and applies to fermi-
onic systems with time reversal invariance.

In this paper, we investigate the nontrivial topological
structures associated with the higher spin condensates. We
first review the momentum space gauge structure of the
spin-1 condensate, namely the A phase of3He. As it has been
pointed out,8 the momentum space gauge structure of the
pairing condensate is given by that of the t’Hooft-Polyakov
monopole. We then investigate the system of spin-2(quintet)

pairing condensate of the underlying spin-3/2 fermions. The
most general Hubbard model of spin-3/2 fermions has re-
cently been introduced and investigated extensively by Wuet
al.,20 who found that the model always has a generic SOs5d
symmetry in the spin sector. Building on this work, we show
here that the fermionic quasiparticles of the quintet pairing
condensate can be described by the second Hopf map. Simi-
lar to the SDW+BCS system investigated by Demler and
Zhang,16 the quasiparticles of the quintet pairing condensate
also accumulate an SU(2) holonomy. The quintet pairing
condensate can be experimentally realized in a number of
systems. Cold atoms with spin-3/2 in the continuum or on
the optical lattice can be accurately described by the model
of local contact interactions20 U0 and U2. These interaction
parameters can be experimentally tuned over a wide range,
including the range for stable quintet condensates. Effective
spin-3/2 fermions can also be realized in solid state systems
with at least two Kramers doublets; for example, in bands
formed by P3/2 orbitals.

In the rest of this paper, we shall use spin-1/2 system to
be short for the spin-1/2 superfluid3He-A and spin-3/2 sys-
tem for thes-wave spin-3/2 superconductor in the quintet
channel. The repeated indices are assumably summed
throughout this paper.

II. SUPERFLUID 3He-A

A. Goldstone manifold and the first Hopf map

The general form of the equilibrium order parameter in
the 3He-A phase can be written as8

kDskdail = Dkd̂asêi
s1d + iêi

s2dd, s1d

where the spin indexsad and orbital indexsid run from 1 to
3. Dk is a complex number that contains the information of

the magnitude and theUs1d phase.d̂ is the normal vector of
the plane to which the spin direction is restricted. The or-

thogonal vectorsês1d, ês2d, and l̂ = ês1d3 ês2d form a local
physical coordinate frame.

The Goldstone manifold of the order parameter is given
by8
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Ra = G/H =
Us1d ^ SOs3dsLd

^ SOs3dsSd

SOs2dsSd
^ Us1dcombined

^ Z2
combined

= S2
^ SOs3drelative/Z2. s2d

Here, SOs3drelative denotes such rotations about the axisl̂ that
lead to new degenerate states that are relative towards gauge
transformations.8 The Us1dcombinedcomes from the fact that
the A-phase state is invariant under combined
transformation8 of the gauge transformation with the param-
eter f from the Us1d group and the orbital rotation ofês1d,

ês2d, and l̂ about axisl̂ by the same anglef. The Z2
combined

denotes the combined operation thatd̂→−d̂,Dk→−Dk. This
combined discrete symmetry leads to the existence of half-
quantum vortices.8 Around a half-quantum vortex, the vector

field d̂ is continuously rotated into −d̂, and theUs1d phase of
Dk continuously evolves from 0 top when the order param-
eter returns to itself after an adiabatic circuit.

If we fix the local orthogonal frame in an arbitrary direc-
tion and adiabatically move the quasiparticle around a line
defect of a half-quantum vortex, the trajectory of the order
parameter is a closed loop on theS2/Z2 space. On the other
hand, the degrees of freedom of the quasiparticle(a two-
dimensional spinor) form a three-dimensional sphereS3 and
the trajectory of the quasiparticle onS3 is not closed. This
adiabatic evolution defines the following map:

S3 → S2/Z2. s3d

In the topological terminology, Eq.(3) is determined by the
third homopotic group denoted byp3sS2/Z2d. Due to a theo-
rem in the Homopoty theory,21

pksSn/Z2d = pksSnd, for k ù 2. s4d

Equation (3) is homopotically equivalent to the first Hopf
mapS3→S2, that isUs1d Berry phase in the FQHE and other
nanostructures in the semiconductors.22,23

B. Berry connection, first Chern number, t’Hooft-Polyakov
monopole, and Dirac monopole

If we define the spinor as

Ck
† = sck,1/2

† ,ck,−1/2
† ,c−k,1/2,c−k,−1/2d, s5d

the mean field Hamiltonian for3He-A is given by

H = o
k

8
Ck

†HkCk, s6d

with

Hk = Seks
0 Dk

Dk
† − eks

0D , s7d

whereDk=−Dkd̂asaR and R=−is2. ek is the kinetic energy
on the lattices referenced from the Fermi surface and the
summation of momentumk is over half of the Brillouin zone
to avoid the double counting. Here,s0 is the 232 identity
matrix ands1,2,3 are Pauli matrices.

The Berry phase connection(BPC) is defined by the dif-
ferential change of states projecting to themselves. In this
paper, it will be illustrated by using the state with a positive
eigenvalue. BPC obtained from the state with a negative ei-
genvalue is simply the complex conjugate to the one with the
eigenvalue of a different sign. The BPC and its field strength
can be obtained, respectively, as

Aa = − iAa
csc

2
, Aa

c = eabc
d̂b

d
, s8d

and

Fbc
a = ]bAc

a − ]bAc
a + eadeAb

dAc
e = −

1

d2ebced̂ed̂a. s9d

The gauge invariant magnetic field can be defined as

Ba =
1

2
eabcFbc

e de = −
d̂a

d2 . s10d

This is aUs1d magnetic-monopole-like field in thed-space.

It emerges when there are line defects in thed̂-field, e.g.,
half-quantum vortices in the superfluid He-3A phase. If we
transport the spin-1/2 fermion adiabatically around the vor-
tex, the electronic wavefunction gains the phase accumulated

due to thed̂-field, as we discussed previously. Moreover, the
first Chern number can be computed easily, as

C1 =
1

4p
rBW ·dWS= − 1. s11d

This is the famous t’Hooft-Polyakov monopole(TPM).8,24

Different from the Dirac monopole, the gauge field of the
TPM is non-Abelian and finite everywhere overS2/Z2, while
the Dirac magnetic monopole is Abelian and has a singular-
ity string. There is a deep and direct relation between them,
which can be achieved by a singular gauge
transformation.25–28

The present SOs3d Berry phase defines a SOs3d gauge
theory onS2/Z2. Using the covariant derivativeDa=]a+Aa,
the SOs3d generators in the presence of t’Hooft-Polyakov
monopole can be written as29

Lab = Lab − id2fab, a = 1,2,3, s12d

whereLab=−idaDb+ idbDa and fab=−iFab
c sc/2. Defining Ia

= 1
2eabcLbc, one finds easily thatfIa,Ibg= ieabcIc, satisfying the

SOs3d algebra. Using Eqs.(8) and (9), one can show

Lab = Lab
s0d + eabc

sc

2
, s13d

where Ls0d is the orbital angular momentum, defined by
Lab

s0d=−ida]b+ idb]a. Define26

V = expFi
qs3ada

Îd2 − d3
2G , s14d

where sab=eabcsc/2 and cosq=d3/d. One can perform a
singular SOs3d gauge transformation onLab such thatJab

=VLabV
†, where
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Jmn = − idm]n + idn]m + emn

s3

2
, s15d

Jm3 = − idm]3 + id3]m − emn

dn

d + d3

s3

2
, s16d

with m ,n=1,2. emn is the antisymmetry tensor, which has
only one component:e12=1 in this case. It is obvious that
Jmn=J12 forms theUs1d generator onS2/Z2. From the defi-
nition of Eq. (12), one can extract theUs1d BPC regardless
of the unnecessarys3/2, as

am = − iemn

dn

dsd + d3d
, a3 = 0, s17d

and the finiteUs1d field strength overS2/Z2 as

Fab = ieabc
dc

d3 . s18d

We should notice that the singular gauge transformation
we used has a singularity string along the negativez axis.
Therefore, while the covariant SOs3d BPC is finite over the

whole d̂-field, theUs1d BPC has a singularity string that is
reflected through the transformation. This transformation is
only valid on the northern hemisphere including the equator
of theS2/Z2. One is able to choose another gauge that has the
singularity along the positivez axis to describe the transfor-
mation on the southern hemisphere. In the overlap region,
the two gauge connections should be connected by a gauge
transformation.30

The role of this singular gauge transformation is very in-
triguing. We can view the covariant SOs3d gauge potential
Aa

c in Eq. (8) as a vectordc pointing in the isospin space. The
singular gauge transformation is nothing but the rotation of
the spin vector fromdc to d3. Therefore, the invariant sub-
group of SOs3d emerges from the isometry group of the
equator ofS2/Z2, which is Us1d. This mechanism accounts
for the appearance of theUs1d Berry phase in this problem.
As a result, the SOs3d Berry phase in this system is essen-
tially equivalent to theUs1d Berry phase.

III. s-WAVE QUINTET PAIRING CONDENSATE
IN SPIN-3/2 SYSTEM

A. Goldstein manifold and the second Hopf map

Another candidate for nontrivial gauge structures is the
spin-3/2 fermionic system with contact interaction, in which
an exact SOs5d symmetry was identified recently.20 It may
be studied in the ultracold atomic systems, such as9Be,
132Cs, 135Ba, 137Ba. The four-component spinor
sc3/2,c1/2,c−1/2,c−3/2dT forms the spinor representations of the
SUs4d group which is the unitary transformation of the four-
component complex spinor. The kinetic energy term has ex-
plicit SUs4d symmetry. However, thes-wave contact interac-
tion term breaks the SUs4d symmetry to SOs5d. Because of
the s-wave scattering, there are only the singlet and quintet
channels, as required by the Pauli’s exclusion principle. In-

terestingly, the spin SUs2d singlet and quintet channel inter-
action can also be interpreted as SOs5d group’s singlet and
five-vector representations.

The Cooper pair structures have also been studied in spin-
3/2 system.20,31 The singlet and quintet pairing channel op-
erators are described by

h†srd =
1

2
ca

†srdRabcb
†srd,

xa
†srd =

− i

2
ca

†srdsGaRdabcb
†srd,

whereGa are the SOs5d gamma matrices that take the form

G1 = S 0 iI

− iI 0
D, Gi = Ssi 0

0 − si
D, G5 = S 0 − I

− I 0
D ,

s19d

satisfying the Clifford algebrahGa,Gbj=2dab. The SOs5d
charge conjugate matrixR is given by

R= S 0 is2

is2 0
D . s20d

The quintet pairing structure is spanned by the five polarlike
operatorsx1,5

† , whose expectation value has a five-vector
and a phase structure asdae

if. The Goldstone manifold for
the quintet pairing is

R3/2 =
SOs5ds ^ SOs3dL ^ Us1d
SOs4ds ^ SOs3dL ^ Z2

= S4
^ Us1d/Z2, s21d

where theZ2 symmetry comes from the combined operations
da→−da,f→f+p.

Because the four-component spinor forms the seven-
dimensional sphere, similar to the spin-1/2 case, the adia-
batic transportation of the quasiparticle around a half-
quantum vortex in our spin-3/2 system defines a map

S7 → S4/Z2, s22d

which is homopotically equivalent to the second Hopf map,
that is,S7→S4.

B. Berry connection, second Chern number, SO(4) monopole,
and Yang monopole

Let us introduce the spinor

Ck
† = sck,3/2

† ,ck,1/2
† ,ck,−1/2

† ,ck,−3/2
† ,c−k,3/2,c−k,1/2,c−k,−1/2,c−k,−3/2d,

s23d

wherecks
† is the creation operator of an electron with the spin

components and momentumk. The mean field Hamiltonian
can be written as

H = o
k

8
Ck

†HkCk, s24d

with
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Hk = SekG
0 Dk

Dk
† − ekG

0D , s25d

whereek is the kinetic energy on the lattices referenced from
the Fermi surface.Dk=−DkdaGaR while Dk contains the mag-
nitude and the phase of the superconducting order parameter.
The momentumk is summed only over half of the Brillouin
zone to avoid the double counting. The subscripta runs from
1 to 5. da forms a four-dimensional sphereS4. G0 is the 4
34 identity matrix, andGa are given by Eq.(19). The eigen-
values of Eq.(25) are

l = ± Ek = ± Îek
2 + uDku2 s26d

and their corresponding eigenvectors are

ca
+skd =

1
ÎsEk + ekd2 + uDu2

SsEk + ekdual
Dk

†ual
D , s27d

ca
−skd =

1
ÎsEk + ekd2 + uDu2

S Dkual
sEk + ekdual

D , s28d

whereual are SUs4d spinors.
We are interested in the system with the presence of half-

quantum vortices. The formation of this kind of vortex is
very similar to the ones in the spin-1/2 system. If we trans-
port the spin-3/2 fermion adiabatically around one of them,

a nontrivial phase is accumulated due to thed̂-field. The BPC
and the covariant field strength can be obtained, respectively,
by

Aa =
i

d2dcG
ca, a = 1,2,3,4,5 s29d

and

Fabc= −
i

d3sdaGbc + dbGca + dcG
abd, s30d

whereGab=s1/4idfGa,Gbg making up of the SOs5d genera-
tors. Similar non-Abelian gauge structures also appeared in
the pseudoparticle field in high dimensions.32–34 Instead of
the first Chern number, we have the nonvanishing second
Chern number

C2 = −
1

96p2rdVdTrsFabcFabcd = 1, s31d

wheredVd denotes the integration over the angular part of
da. The field strength onS4, fab=fDa,Dbg=]aAb−]bAa

+fAa,Abg, can be obtained as

fab = − i
1

d2Pab,cdG
cd, s32d

where Pab,cd= 1
2sdacdbd−daddbc+daddbdc−dbddadc−dacdbdd

+dbcdaddd. Pab,cd is a 10310 matrix becausea and b are
antisymmetric as well asc and d. Similar to the projection
operatordmn− q̂mq̂n in QED, Pab,cd is the transverse projec-
tion operator from ten-dimensional space to six-dimensional
space, satisfyingdaPab,cd=0. The relation betweenFabc and
ordinary field strengthfab can be revealed if we defineGab,

which is dual toFabc by Gab=eabcdeFabc.
33,34 Then, one can

show

fab =
1

2
eabcde

dc

d
Gde. s33d

Because of the projection operatorPab,cd in fab, the funda-
mental degrees of freedom of the gauge structure in this
problem are not SOs5d but SOs4d, because SO(4) has six
generators. We shall show that it is able to make a route from
fab to the SOs4d gauge field strength using a singular gauge
transformation. Similar to the analysis in the second section,
the transformation operator in this SOs5d case has the fol-
lowing form:

U = expFi
qG5mdm

Îd2 − d5
2G, m = 1,2,3,4, s34d

where cosq=d5/d. Equation(29) then becomes

am =
− i

dsd + d5d
Smndn, m = 1,2,3,4, s35d

a5 = 0, s36d

whereSmn are the SOs4d generators in thes 1
2 ,0d % s0, 1

2
d rep-

resentation, which have the form

Smn =1hmn
i si

2
0

0 h̄mn
i si

2
2 , s37d

wherehmn
i =eimn4+dimd4n−dind4m is the t’Hooft symbol, and

m andn run from 1 to 4. In this reducible representation of
the SOs4d gauge group, one can easily distillate the SUs2d
ingredients because SOs4d=SUs2d ^ SUs2d. The self-dual
SUs2d gauge field is given by

am =
− i

dsd + d5d
hmn

i dn

si

2
, m = 1,2,3,4,

a5 = 0. s38d

Similar to the spin-1/2 system, we obtain the SOs4d BPC,
which is only defined on the northern hemisphere with the
equator. The singularity string along the negativez axis in-
herits from the singular gauge transformation. The role of the
singular gauge transformation byU can be also interpreted as
the rotation of a five-dimensional vector from an arbitrary
direction da to d5 in the five-dimensional isospin space.
Therefore, the invariant subgroup is the isometry group of
the equatorS3/Z3, which is SOs4d. Surprisingly, the repre-
sentation we achieve in SO(4) gauge theory is the reducible
s 1

2 ,0d % s0, 1
2

d, which is the direct sum of two SUs2d gauge
theory. Thus, the SUs2d Berry phase naturally arises in this
system.

This SUs2d nature of the Berry phase in the spin-3/2 sys-
tem is manifested if we choose a special spinorual such that
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Dkual= uDkue−ifaual, which is studied by Demler and
Zhang.16 In this representation,ual is not only a SUs4d
spinors but also a SOs5d one. The BPC is then given by

Ai
±ab = kca

±u]iucb
±l = kau]iubl. s39d

This is exactly the SUs2d holonomy in the context of
Demler and Zhang.16 The special choice of the spinorsual is

equivalent to fixingd̂a= d̂5 in our notion.

IV. CONCLUSION AND DISCUSSION

In summary, we found that the SU(2) non-Abelian Berry
phase emerges naturally in quintet condensates of spin-3/2
fermions. The underlying algebraic structures for the3He
and the spin-3/2 system are the first and the second Hopf
maps, respectively. The Chern numbers for both cases were
obtained in a standard manner. In the previous case, only the
first Chern number is nonvanishing, while in the later case,
only second Chern number is nonzero. Both systems appear
to havefinite gauge potential, which means that the BPC can
be defined covariantly everywhere over thed-field. However,
the correspondingUs1d and SUs2d gauge connections can
only be defined patch by patch in thed space. The bridge

across between the finite gauge connection and the one with
singularity is constructed by the singular gauge transforma-
tion, which can only be defined patch by patch in thed space
as well.35 The singular gauge transformation also bear with
some physical meaning. It can be understood as the rotation
in the spin(isospin) space, namelyda. When the spin(iso-
spin) points to the north pole, the invariant subgroup be-
comes the isometry group of the equator. When it is rotated
by the gauge transformation, the gauge structure becomes
finite and covariant over the wholed space.

To experimentally manifest this topological effect, the
spin-3/2 ultracold atomic systems may serve as a promising
candidate. It may also shed some light on measuring the
second Chern number, which has not been revealed by any
system so far. Furthermore, our calculation can also be gen-
eralized to consider the spin-7

2 superconductors in which the
algebraic structure is suggested to be the third Hopf map.36
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