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Schwinger-boson mean-field theory of the Heisenberg ferrimagnetic spin chain
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The Schwinger-boson mean-field theory is applied to the quantum ferrimagnetic Heisenberg chain. There is
a ferrimagnetic long-range order in the ground state. We observe two branches of the low-lying excitation and
calculate the spin reduction, the gap of the antiferromagnetic branch, and the spin fluctuation atT50 K. These
results agree with the established numerical results quite well. At finite temperatures, the long-range order is
destroyed because of the disappearance of the Bose condensation. The thermodynamic observables, such as the
free energy, magnetic susceptibility, specific heat, and the spin correlation atT.0 K, are calculated. The
Txuni has a minimum at intermediate temperatures and the spin-correlation length behaves asT21 at low
temperatures. These qualitatively agree with the numerical results and the difference is small at low tempera-
tures.@S0163-1829~99!07225-2#
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I. INTRODUCTION

A variety of exotic physical phenomena in the low
dimensional magnetic systems have been attracting muc
terest in recent years. In these systems, the physical pic
obtained from the classical approach are often greatly m
fied or even in contradiction with the result of the stro
quantum fluctuation and topological effect. Haldane1 conjec-
tured that the one-dimensional integer-spin chain with
nearest-neighbor coupling has an energy gap in the spin
citation spectrum and the spin correlation decays expon
tially with distance, whereas that of the half-odd-integer s
chain is gapless and the spin correlation decays algebrai
with distance.

It is very interesting to discuss the physical phenome
for the spin chain mixed by different kinds of spins. R
cently, the one-dimensional Heisenberg ferrimagnetic s
chain, which is made of two kinds of spins,SA51/2 and
SB51, has been considered.2–8 This one-dimensional chain
can be described by the Hamiltonian

H5 (
i 51,h

N

SW i
A
•SW i 1h

B , ~1!

where the antiferromagnetic coupling energyJ is set to equal
1. N is the number of unit cells, andh is the index of the
nearest neighbors. Brehmeret al.2 showed that the absolut
ground state of this model has a ferrimagnetic long-ra
order and obtained the low-lying excitation, by using t
spin-wave theory~SWT! and the quantum Monte Carl
method~QMC!, which is confirmed by Kolezhuket al.3 with
the matrix product approach. It is also consistent w
Tian’s8 rigorous theorem that the absolute ground state
the one-dimensional antiferromagnetic Heisenberg mo
with unequal spins has both antiferromagnetic and ferrom
netic long-range orders. Furthermore, Yamamotoet al.6 used
the modified spin-wave theory~MSWT!, the density-matrix
PRB 600163-1829/99/60~2!/1057~7!/$15.00
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renormalization-group method~DMRG! and QMC to calcu-
late the thermodynamic observables.

In this paper we study the ferrimagnetic spin chain
means of the Schwinger-boson mean-field theory~SBMFT!.
The theory has been applied successfully to the inte
Heisenberg chain,9 presumably due to the neglect of top
logical excitations in the SBMFT. It can also be extended
the case of the magnetic order range11 by identifying the
magnetic order with the Bose condensation of the Schwin
bosons. In the Heisenberg ferrimagnetic spin chain, we
that the SMBFT theory is suitable to describe both t
ground state with the ferrimagnetic long-range order and
thermodynamic properties at finite temperatures. The me
field theory gives rise to the leading term in a systematic 1N
expansion9 and the effects of fluctuation beyond the mea
field theory can also be discussed, as we will mention la

In our SBMFT approach, the ground state has a lo
range ferrimagnetic order arising from the condensation
the Schwinger bosons atT50 K. There are two different
kinds of excitation: One is gapless and ferromagnetic and
other is gapful and antiferromagnetic, which has be
pointed out by Brehmeret al.2 The spin reduction, the gap o
the antiferromagnetic branch, and the spin correlation aT
50 K are calculated and the results are in good agreem
with those of the QMC and DMRG.2,6 When T.0 K, the
two branches of excitation are both gapful, so that the B
condensation disappears and there is no real long-range
der. This is just what the Wigner-Mermin theorem tells
for one dimension. The gap of the ferromagnetic branch
proportional toT2 and the spin-correlation length is dive
gent as 1/T. The thermodynamic observables, such as
free energy, the magnetic susceptibility, and the spec
heat, are calculated. They agree with the numerical resul2,6

qualitatively and the difference is small at low temperatur
This paper is organized as follows: In the second sec

we construct the mean-field theory of the ferrimagne
chain. In the third section we give the ground-state prop
1057 ©1999 The American Physical Society
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1058 PRB 60WU, CHEN, DAI, YU, AND SU
ties. In the fourth section we study the thermodynamic pr
erties. Conclusions are made and advantages and limita
compared with other approaches are discussed in the
section.

II. SCHWINGER-BOSON MEAN-FIELD THEORY
OF THE FERRIMAGNTIC HEISENBERG SPIN CHAIN

The spin operatorSW i
A can be represented by the Schwing

bosonsai ,↑ ,ai ,↓ ,

Si ,1
A 5ai ,↑

† ai ,↓ Si ,2
A 5ai ,↓

† ai ,↑ ,

Si ,z
A 5

1

2
~ai ,↑

† ai ,↑2ai ,↓
† ai ,↓!, ~2!

with Si
A5 1

2 (ai ,↑
† ai ,↑1ai ,↓

† ai ,↓) on each site of kindA, andSW j
B

can be represented in a similar way.
The Hamiltonian~1! is rewritten in this representation,

H52
1

2 (
i 51,h

N

~ai ,↑
† bi 1h,↓

† 2ai ,↓
† bi 1h,↑

† !

3~ai ,↑bi 1h,↓2ai ,↓bi 1h,↑!1(
i ,h

Si
ASi 1h

B

522 (
i 51,h

N

Di ,i 1h
† Di ,i 1h1(

i ,h
Si

ASi 1h
B , ~3a!

Di ,i 1h5
1

2
~ai ,↑bi 1h,↓2ai ,↓bi 1h,↑!. ~3b!

Considering the constraint(sai ,s
† ai ,s52SA or (sbj ,s

† bj ,s

52SB on each site, we may introduce two kinds of Lagran
ian multipliersl i

A and l j
B to impose the constraint. At th

mean-field level, we can take the average value of the b
operator^Di ,i 1h&5D to be uniform and static. And so ar
^l i

A&5lA and ^l j
B&5lB.

The mean-field Hamiltonian reads

HMF52 (
i 51,h

N

$D* ~ai ,↑bi 1h,↓2ai ,↓bi 1h,↑!

1~ai ,↑
† bi 1h,↓

† 2ai ,↓
† bi 1h,↑

† !D% ~4a!

1lA(
i 51

N

~ai ,s
† ai ,s22SA!

1lB(
j 51

N

~bj ,s
† bj ,s22SB!

12zND* D1zNSASB, ~4b!

in momentum space, which is transformed into
-
ns
al

r

-

d

HMF5(
k,s

$lAak,s
† ak,s1lBbk,s

† bk,s%

2(
k,s

$D* zgk* ~ak,↑b2k,↓2ak,↓b2k,↑!

1Dzgk~ak,↑
† b2k,↓

† 2ak,↓
† b2k,↑

† !%12zND* D

22N~SAlA1SBlB!1zNSASB. ~4c!

Herez is the number of the nearest-neighbor sites and eq
2 in the one-dimensional chain, andgk5(1/z)(heikh

5cosk. The sum ofk is restricted in the reduced first Bril
louin zone, which extends from2p/2 to p/2.

Using the Bogoliubov transformation

S ak,↑

b2k,↓
† D 5S coshuk sinhuk

sinhuk coshuk
D S ak,↑

b2k,↓
† D S bk,↑

a2k,↓
† D

5S coshuk 2sinhuk

2sinhuk coshuk
D S bk,↑

a2k,↓
† D , ~5!

with u given by

tanh 2u5
uzDgku

~lA1lB!/2
, ~6a!

we obtain the energy spectrum

Ek,s
a 5

lA2lB

2
1AS lA1lB

2 D 2

2uzDgku2, ~6b!

Ek,s
b 52

lA2lB

2
1AS lA1lB

2 D 2

2uzDgku2. ~6c!

The Hamiltonian is diagonalized and it is easy to write do
the free energy,

HMF5(
k,s

$Ek
a~ak,s

† ak,s11/2!1Ek
b~bk,s

† bk,s11/2!%

12zND* D22N~SA11/2!lA22N~SB11/2!lB

1zNSASB ~7a!

FMF

2N
5

2

bE2p/2

p/2 dk

2pH lnF2 sinhS b

2
Ek

aD G1 lnF2 sinhS b

2
Ek

bD G J
1zD* D2~SA11/2!lA2~SB11/2!lB1

z

2
SASB.

~7b!

The mean-field self-consistent equations can be obtaine
minimizing the free energy, i.e.,dF/dlA50, dF/dlB50,
and dF/dD* 50. After a simple algebra, the equations a
rearranged as

SB2SA5E
2p/2

p/2 dk

2pH coth
b

2
Ek

b2coth
b

2
Ek

aJ , ~8a!
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SB1SA115E
2p/2

p/2 dk

2p

~lA1lB!/2

AS lA1lB

2
D 2

2uzDgku2

3H coth
b

2
Ek

b1coth
b

2
Ek

aJ , ~8b!

2

z
5E

2p/2

p/2 dk

2p

ugku2

AS lA1lB

2
D 2

2uzDgku2

3H coth
b

2
Ek

b1coth
b

2
Ek

aJ . ~8c!
-
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Rescale the parameters (lA,lB,D,b)→(L1 ,L2 ,h,k)
~Ref. 8!:

lA1lB

2
5

1

2
zL1 , D5

1

2
L1h,

lA2lB

2
5

1

2
zL2 , b5

4k

z
. ~9!

Then the angle of the Bogoliubov transformation is e
pressed in a compact form

cosh 2uk5
1

A12h2gk
2

, sinh 2uk5
uhgku

A12h2gk
2

, ~10!

and the self-consistent equations read
SB2SA5E
0

p/2
dk

p
$coth@k~L1A12h2gk

22L2!#2coth@k~L1A12h2gk
21L2!#%, ~11a!

SB1SA115E
0

p/2dk

p H coth@k~L1A12h2gk
22L2!#1coth@k~L1A12h2gk

21L2!#

A12h2gk
2 J , ~11b!

SB1SA112L1h25E
0

p/2dk

p
$coth@k~L1A12h2gk

22L2!#1coth@k~L1A12h2gk
21L2!#%A12h2gk

2. ~11c!
te
nu-

-

III. PROPERTIES OF THE GROUND STATE

Notice that the Bogoliubov particles in theb branch have
to condense atT50 K as long asSAÞSB, otherwise Eq.
~11a! cannot be satisfied. The excitation energyEb has its
minimal valueEb50 at k50 while thea branch has a gap
of 2L2 at T50 K. Sarkeret al.11 showed that the long
range order is related to the condensation of the Schwin
bosons in both the ferromagnetic and antiferromagn
Heisenberg models. We now arrive at the same conclu
for the ferrimagnetism model at one dimension. This can
contrasted to the antiferromagnetic case, where there i
long-range order even atT50 K at one dimension.

Suppose that there is an infinitesimal external stag
magnetic field that is upward at theB site and downward a
theA site. Then theb↑ branch has the lowest energy and t
bosons condense at the state ofb↑,k50. Because of the bos
condensation, the self-consistent equations atT50 K are
modified as follows:

SB2SA5
1

4N
coth@k~L1A12h22L2!#uk→1` , ~12a!

L1A12h25L2 , ~12b!

SB1SA115
2

p
K~h!1

~SB2SA!

A12h2
, ~12c!
er
ic
n
e
no

er

SB1SA112L1h25
2

p
E~h!1~SB2SA!A12h2.

~12d!

HereE(h) andK(h) are the first- and second-type comple
elliptic integrals. The parameters have been determined
merically for the case inSA51/2 and SB51 with h
50.8868,L151.9238, andL250.8890.

The average value of the spin on the siteB,

^SZ
B&5

1

2
^bj↑

† bj↑2bj↓
† bj↓&5

1

2N (
k

^bk↑
† bk↑2bk↓

† bk↓&,

can be calculated atT50 K, by using the quasiparticle op
erator

^SZ
B&5

1

2N
cosh2 uknbk↑uk50,T→0 K

5
1

2 S 11
1

A12h2D ~SB2SA!50.791. ~13a!

Similarly, the average value of the spin on the siteA is

^SZ
A&52

1

2N
sinh2uknbk↑uk50,T→0 K

5
1

2 S 12
1

A12h2D ~SB2SA!520.291. ~13b!
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The spin reductiont5SB2^Sz
B& on the siteB or t5SA

1^Sz
A& on the siteA is given by

tA5tB5
~SB1SA!

2
2

1

A12h2

~SB2SA!

2
50.209.

~13c!

From Eq.~11a!, we can see that the number of the co
densed bosons on the stateb↑,k50 is 2N(SB2SA), which is
just the number of the Schwinger bosons on the siteB sub-
tracted by that on the siteA. As long asSAÞSB, there is a
ferrimagnetic long-range order, which agrees with Tian’s r
orous proof.8 We quote several known results for the val
of t to show the satisfactiom of our calculation. The QM
~Ref. 2! gives t50.20760.002 andt50.221 in the matrix
product states approach.3 The naive SWT overestimates th
spin reduction and results int50.3.2

The gap of the antiferromagnetic branch in our mean-fi
theory isDanti52L251.778, which is very close to that i
the exact diagonalization,4 Danti51.759, and in the QMC,2

Danti51.767. The naive SWT~Ref. 2! and the MSWT~Ref.
6! give the gapDanti51 andDanti51.676, respectively.

We calculate the ground-state energy of one unit c
which yields the zero-temperature free energy per unit c

FMF

N
5E

2p/2

p/2 dk

2p
$4L1A12h2gk

2%1
z

2
L1

2h2

22L1~SA1SB11!22L2~SA2SB!1zSASB

521.904. ~14!

This result is much lower than those of the QMC~Ref. 2!
and the MSWT,6 which are 21.437 and21.454, respec-
tively. In fact, this is an artificial result caused by the mea
field theory, in which we assume that the constraint and
bond operator are uniform and static. We have overcoun
the degrees of freedom of the Schwinger bosons by a fa
of 2, as argued by Arovas and Auerbach.9,10 To count the
degrees of freedom correctly, we have to divide the par
fluctuation per unit cellFMF /N12SASB by 2, and add back
the classic ground energy per cell22SASB. Then we have
the modified result,21.455. The 1/N expansion can give the
above argument a strong basis.

The spin-correlation lengthj of the ground state is also o
interest. Because of the appearance of the long-range o
the transverse and longitudinal fluctuations are anisotrope
our SBMFT, the longitudinal correlation between the siteA
and the siteB can be calculated as

^Si ,z
A Sj ,z

B &2^Si ,z
A &^Sj ,z

B &

52^~SA2ai ,↑
† ai ,↑!~SB2bj ,↓

† bj ,↓!&1^~SA2ai ,↑
† ai ,↑!&

3^~SB2bj ,↓
† bj ,↓&

52^ai ,↑
† ai ,↑bj ,↓

† bj ,↓&1^ai ,↑
† ai ,↑&^bj ,↓

† bj ,↓&

52ug~Ri j !u2, ~15a!

g~Ri j !5E
2p/2

p/2 dk

2p
sinh 2uke

2 ikRi j . ~15b!
-

-

d

l,
l,

-
e
d

or

f

er,
In

Similarly, the longitudinal fluctuations betweenA site andA
site and betweenB site andB site can be given by

^Si ,z
A Sj ,z

A &2^Si ,z
A &^Sj ,z

A &5u f ~Ri j !u2, ~15c!

^Si ,z
B Sj ,z

B &2^Si ,z
B &^Sj ,z

B &5u f ~Ri j !u2, ~15d!

f ~Ri j !5E
2p/2

p/2 dk

2p
cosh 2uke

2 ikRi j . ~15e!

From Eqs.~15b! and ~15e! we get the correlation lengthj
5h/@8(12h2)#1/250.6785. Although the correlation func
tions are not in a good exponential form becauseh is not
close to 1, we can still see that the correlation decays v
rapidly.

The three kinds of transverse correlation are given by

^Si ,1
A Sj ,2

B &5^ai↑
† ai↓bj↓

† bj↑&

52ug~Ri j !u2

2~SB2SA!g~Ri j !sinh2ukuk50 , ~16a!

^Si ,1
A Sj ,2

A &5^ai↑
† ai↓aj↓

† aj↑&

5u f ~Ri j !u2

12~SB2SA! f ~Ri j !sinh2 ukuk50 , ~16b!

^Si ,1
B Sj ,2

B &5^bi↑
† bi↓bj↓

† bj↑&

5u f ~Ri j !u2

12~SB2SA! f ~Ri j !cosh2 ukuk50 . ~16c!

We note that the transverse correlation length is two tim
the longitudinal one. The SWT calculation gives that t
longitudinal correlation lengthj51/(2 ln 2)50.7213,2 while
the numerical methods cannot give the accurate correla
length, because the fluctuation decays so rapidly.

IV. THERMODYNAMIC PROPERTIES
AT FINITE TEMPERATURES

We investigate the low-temperature asymptotic expans
of the self-consistent equations~11! and verify that it
changes continuously into Eqs.~12! in T50 K. Equation
~11a! has a solution forTÞ0 K. So there is no boson con
densation. Equation~11a! gives the gap of the ferromagnet
branch as

D ferro5
A12h2

h2

2T2

~SB2SA!2L1
'2.4436T2.

We solved the self-consistent equations~11! numerically
and find that the values of the variation parameters are c
tinuously evolved to the values atT50 K. On the other
hand, we see that the mean-field theory fails and the b
operatorD is zero whenT is higher than a specific tempera
ture, say, approximately 1.38 in our case. The failure of
mean field indicates that the system has entered a lo
moment phase in which there is no correlation of the s
fluctuation, as pointed out by Arovas and Auerbach.9 With
temperature increasing, we find that the gap of the antife
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magnetic branchDanti5L21L1A12h2 varies. In the tem-
perature region where the SBMFT is valid, this gap fi
decreases and then increases. It reaches its minimum, w
is about 1.30 whenT'0.7. The gaps of the ferromagnet
and antiferromagnetic branches are plotted in Fig. 1. And
free energy versusT is calculated and plotted in Fig. 2 wit
the argument of dividing the part of fluctuation by 2.9,10

The spin correlations atT→0 K are calculated:

^SW i
A
•SW j

B&52
3

2
uG~Ri j !u2,

G~Ri j !5
1

2E2p/2

p/2 dk

2p
sinh 2ukH coth

b

2
Ek

a1coth
b

2
Ek

bJ
3e2 ikRi j , ~17a!

^SW i
A
•SW j

A&5
3

2
uF1~Ri j !u2,

F1~Ri j !5E
2p/2

p/2 dk

2pH cosh2 uk coth
b

2
Ek

a

1sinh2 uk coth
b

2
Ek

bJ e2 ikRi j , ~17b!

FIG. 1. The gaps of the ferromagnetic and antiferromagn
branches.

FIG. 2. The free energyF versusT.
t
ich

e

^SW i
B
•SW j

B&5
3

2
uF2~Ri j !u2,

F2~Ri j !5E
2p/2

p/2 dk

2pH sinh2 uk coth
b

2
Ek

a

1cosh2 uk coth
b

2
Ek

bJ e2 ikRi j . ~17c!

BecauseD f erro behaves asT2, the correlation length behave
asT21, i.e., j5h2L1(SB2SA)/(4A12h2)T21.

The dynamic magnetic susceptibility is calculated by u
ing linear-response theory,

S DSz
A~q,v!

DSz
A~q,v!

D 52gS ^^Sz
ASz

A&&qv ^^Sz
ASz

B&&qv

^^Sz
BSz

A&&qv ^^Sz
BSz

B&&qv
D

3S hA~q,v!

hB~q,v!
D , ~18!

where ^^Sz
ASz

A&&, etc., is the retarded Green function, a
hA ,hB are the small external magnetic field, andg is the
Laude factor. In the Matsubra representation, the dyna
magnetic susceptibilities are given by

xAA
zz ~q,ivn!52g2^^Sz

ASz
A&&qv

5
g2

2N(
k

H nB~Ek
a!2nB~Ek1q

a !

ivn1Ek1q
a 2Ek

a

3cosh2 uk1q cosh2 uk

1
nB~Ek1q

b !2nB~Eq
b!

ivn2Ek1q
b 1Ek

b
sinh2 uk1q sinh2 uk

1
11nB~Ek

b!1nB~Ek1q
a !

ivn1Ek1q
a 1Ek

b
cosh2 uk1qsinh2 uk

2
11nB~Ek

a!1nB~Ek1q
b !

ivn2Ek1q
b 2Ek

a
cosh2 uk sinh2 uk1qJ ,

~19a!

xAB
zz ~q,ivn!52g2^^Sz

ASz
B&&qv

5
g2

2N (
k

sinhuk sinhuk1q coshuk coshuk1q

3H 11nB~Ek1q
b !1nB~Ek

a!

ivn2Ek1q
b 2Ek

a

1
nB~Ek1q

a !2nB~Ek
a!

ivn1Ek1q
a 2Ek

a
1

nB~Ek
b!2nB~Ek1q

b !

ivn1Ek
b2Ek1q

b

2
11nB~Ek1q

a !1nB~Ek
b!

ivn1Ek1q
a 1Ek

b J . ~19b!

xBB
zz (q,ivn) and xBA

zz (q,ivn) can be obtained by the ex
change (a↔b) in Eqs.~19a! and ~19b!, respectively.

ic
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The mean-field static uniform and staggered magn
susceptibilities per unit cell are

xuni
MF

N
5g2bE

2p/2

p/2 dk

2p
$nk

a~nk
a11!1nk

b~nk
b11!%, ~20a!

xstag
MF

N
5g2bE

2p/2

p/2 dk

2pH @nk
a~nk

a11!1nk
b~nk

b11!#cosh2 2uk

12sinh2 2uk

11nk
a1nk

b

b~Ek
a1Ek

b!J . ~20b!

If SA5SB, the above equations are reduced to the fami
forms of the antiferromagnetic case,9 which are

xuni
MF

2N
5g2bE

2p/2

p/2 dk

2p
nk~nk11!, ~20c!

xstagger
MF

2N
5g2bE

2p/2

p/2 dk

2pH nk~nk11!cosh2 2uk

1
nk

b11/2

bEk
b sinh2 2ukJ . ~20d!

For low temperatures, bothxuni
MF andxstag

MF are proportional to
T22, e.g., xuni

MF5g2L1h2(SB2SA)3/„2A(12h2)…T22, and
so on. We plot Txuni /Ng2 versus T in Fig. 3 and
Txstag/Ng2 versusT in Fig. 4. There we have multiply the
mean-field susceptibilities with the factor2

3 due to the same
argument as Arovas and Auerbach.9,10 Txuni /Ng2 reaches a
minimum of 0.4 at the intermediate-temperature reg
aroundT'0.5. This is due to the contribution from the ga
ful antiferromagnetic branch. The low-temperature behav
of Txuni /Ng2 whenT,0.420.5, the location, and the valu
of the minimum are found in good agreement with the QM
and DMRG calculations, even better than the MSWT cal
lation with improved dispersion relations.6 After the point of
minimum, the SBMFT result increases too rapidly, show
a discrepancy with numerical calculations.Txstag/Ng2 is
dropped rapidly and monotonously with the temperature
creasing.

The specific heatC/N versusT is calculated by the nu
merical differentiation of the internal energy withT, and is

FIG. 3. TheTxuni /Ng2 versusT.
ic

r

n

r

-

-

plotted in Fig. 5. We also find the low-temperature behav
of C}T1/2, which agrees with the QMC and DMRG
calculation5,6 well when T,0.4. Again the SBMFT result
increases rapidly, failing to see the Schottky-like peak6 at
intermediate temperatures.

In short, the SBMFT result describes the thermodynam
properties well at low temperatures (T,0.4–0.5). The dis-
agreement in intermediate and high temperatures is also
ing to the static and uniform constraint.

V. CONCLUSIONS

Using the Schwinger-boson mean-field theory, we ha
investigated both the ground state and the thermodyna
properties of the Heisenberg ferrimagnetic spin chain. T
long-range ferrimagnetic order of the ground state is cau
by the condensation of the Schwinger bosons. The spin fl
tuations to the ground state are anisotropic and decays
rapidly. The excitation spectrum has both the low-ene
ferromagnetic branch that is gapless atT50 K and the
high-energy antiferromagnetic branch with a gap is 1.778
T50 K. With the temperature increasing, the branch of
ferromagnetic become gapful.D f erro behaves asT2 and
Danti varies. At low temperatures, the ferrimagnetic sp
chain exhibits the feature of the ferromagnetism. The st
magnetic susceptibility, the spin-correlation length, and
specific heat behave asT22, T21, andT1/2, respectively. At

FIG. 4. TheTxstag/Ng2 versusT.

FIG. 5. The specific heat versusT.
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intermediate temperatures, the antiferromagnetic branch
gins to play an important role.6 TheTxuni has a minimum at
T'0.5.

Compared with other approaches, the SBMFT is a sim
mean-field theory but can give many good results at b
zero and finite temperatures. The spin reduction and ga
the antiferromagnetic branchDanti at T50 K differ from
the numerical calculations less than 1%. The thermodyna
properties, such as the static uniform magnetic susceptib
xuni and the specific heatC calculated by the SBMFT, agre
with numerical results well whenT,0.4. The spin correla-
tion that is anisotropic at the ground state and isotropic
finite temperatures can be calculated easily. These re
improve those of the SWT~Ref. 2! largely and are consisten
with those of the more complicated MSWT and numeri
methods.5,6
v

.

ll-
e-

le
h
of

ic
ty

t
lts

l

The SBMFT is not successful at intermediate and h
temperatures. The behavior ofxuni has quantitative discrep
ancy with numerical results, and that ofC does not agree
with numerical calculations qualitatively whenT.0.4. Both
of them increase too rapidly with temperatures increasi
When T.1.38, the order parameter drops to zero and
SBMFT theory fails. It cannot describe the system in t
whole temperature range as the numerical methods and
MSWT do.
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