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Fate and remnants of Majorana zero modes in a quantum wire array
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Experimental signatures of Majorana zero modes in a single superconducting quantum wire with spin-orbit
coupling have been reported as zero-bias peaks in tunneling spectroscopy. We study whether these zero modes
can persist in an array of coupled wires, and if not, what their remnant might be. The bulk exhibits topologically
distinct gapped phases and an intervening gapless phase. Even though the bulk pairing structure is topological,
the interaction between Majorana zero modes and superfluid phases leads to spontaneous time-reversal symmetry
breaking. Consequently, edge supercurrent loops emerge and edge Majorana fermions are in general gapped out
except when the number of chains is odd, in which case one Majorana fermion survives.
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I. INTRODUCTION

Majorana fermions are intriguing objects because they are
their own antiparticles. In condensed-matter physics, Majorana
fermions arise not as elementary particles, but rather as super-
positions of electrons and holes forming the zero-mode states
in topological superconducting states. Majorana fermions were
first proposed to exist in vortex cores and on boundaries of
p-wave Cooper-pairing systems [1–3]. More recently, they
were also predicted in conventional superconductors in the
presence of strong spin-orbit (SO) coupling and the Zee-
man field [4–9]. In cold atom physics, SO coupling has
been realized by using atom-laser coupling [10–14]. This
progress offers an opportunity to realize and manipulate
Majorana fermions in a highly controllable manner, which
has attracted a great deal of attention both theoretical and
experimental [15–28].

Experimental signatures of Majorana zero modes have been
reported as zero-bias peaks in the tunneling spectroscopy of a
single quantum wire with strong SO coupling which either is
coupled with an s-wave superconductor through the proximity
effect [29–35], or is superconducting by itself [36]. A further
study of an array of quantum wires is natural [26–28,37–42], in
particular for the purpose of studying interaction effects among
edge Majorana zero modes [26,43–45]. Topological states in
an array of parallel wires in magnetic fields in the fractional
quantum Hall regime have been studied recently [46,47].
Without imposing self-consistency, flat bands of Majorana
zero edge modes have been found for uniform pairing as
well as Fulde-Ferrell-Larkin-Ovchinnikov pairing [28,38–41],
because under time-reversal (TR) symmetry these Majorana
zero modes do not couple.

However, the band flatness of the edge Majorana zero
modes is unstable due to interaction effects. Li, Wang, and
Wu proposed the mechanism of spontaneous TR symmetry
breaking for the gap opening in the edge Majorana flat
bands [26]. Even in the simplest case of spinless fermions
without any other interaction channels, the coupling between
Majorana zero modes and the pairing phase spontaneously
generates staggered circulating currents near the edge such
that Majorana modes can couple to each other to open the
gap due to the breaking of TR symmetry. Similar results were
also obtained recently in Refs. [27,48]. The mechanism of
gap opening based on spontaneous TR symmetry breaking
also occurs in the helical edge modes of two-dimensional

(2D) topological insulators under strong repulsive interactions,
which leads to edge magnetism [49,50].

II. MAIN RESULTS

In this article, we investigate a coupled array of s-wave
superconducting chains with intrachain SO coupling and an ex-
ternal Zeeman field. We consider both the proximity-induced
and the intrinsic superconductivity. For the proximity-induced
case, the array is placed on top of a bulk superconductor,
and the phase coherence induces a nearly uniform pairing
distribution in the quantum chains, �r = �. The bulk band
structure exhibits several topologically distinct gapped phas-
eswith an intervening gapless phase. In the gapless phase,
edge Majorana zero modes interpolate between nodes in
the bulk energy spectrum. In the topological gapped phase,
they extend into a flat band across the entire edge Brillouin
zone. On the other hand, if either the phase coherence of
the bulk superconductor is weak, or the superconductivity is
intrinsic, as in the case of Pb nanowires [36] or cold atom
systems near Feshbach resonance [18], then �r has to be
solved self-consistently. We find that when the bulk is in the
topological gapped phase, the phase distribution of pairing
order parameters is inhomogeneous along the edge exhibiting
TR symmetry breaking. It induces edge currents and gaps out
the edge Majorana zero modes except when the chain number
is odd, in which case one Majorana zero mode survives. If the
bulk is in the gapless phase, in general TR breaking is also
observed, but not always, because Majorana modes associated
with opposite winding numbers can coexist on the same edge
which can be coupled by TR-invariant perturbations.

III. MODEL OF QUANTUM WIRE ARRAY

Consider an array of SO coupled chains with the proximity-
effect-induced s-wave pairing along the x direction, which are
juxtaposed along the y direction. The band Hamiltonian is

H0 = −
∑
rσ

t(c†rσ cr+x̂,σ + H.c.) − μc†rσ crσ

−
∑

r

iλ(c†r↑cr+x̂,↑ − c
†
r↓cr+x̂,↓) + H.c.

−
∑
rσ

t⊥(c†rσ cr+ŷ,σ + H.c.), (1)
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where r is the lattice site index; σ = ↑ , ↓ labels two spin
states; t and t⊥ are intra- and interchain nearest-neighbor
hoppings, respectively, and μ is the chemical potential. λ here
is the SO coupling, which we choose to lie only in the x

direction. This unidirectional SO coupling is a natural setup
in cold atom experiments using atom-laser interaction [18,28].
The external field part of the Hamiltonian is

Hex =
∑

r

�r (c†r↑c
†
r↓ + H.c.) − B(c†r↑cr↓ + H.c.). (2)

The first term accounts for superconducting pairing, where
�r is the s-wave pairing on site r , and can be induced either
through the proximity effect or intrinsically. For the proximity-
induced superconductivity, we take �r to be spatially uniform,
which is a commonly used approximation. For intrinsic
superconductivity, �r will be solved self-consistently. The
second term arises from an external Zeeman field B, which
can also be simulated using atom-laser coupling [18].

IV. UNIFORM PAIRING

Let us first consider a uniform pairing �r = � which
can be chosen as real without loss of generality. Under
periodic boundary conditions in both x and y directions, the
Hamiltonian Eqs. (1) and (2) can be written in momentum
space,

H = Hband + Hex =
∑

k

ψ
†
khkψk, (3)

where ψk = [ck↑,ck↓,c
†
−k↑,c

†
−k↓]t , and

hk = Tkτ3 + �kσ3 − Bσ1τ3 + �σ2τ2. (4)

The two sets of Pauli matrices σi and τi (i = 1,2,3) act in
the spin and particle-hole spaces, respectively. Tk and �k are
given by

Tk = −2t cos kx − 2t⊥ cos ky − μ (5)

and

�k = 2λ sin kx. (6)

The energy spectrum of Eq. (4) is

E2
k = T 2

k + �2
k + B2 + �2 ± 2

√
T 2

k �2
k + T 2

k B2 + B2�2.

(7)

Although hkx,ky
does not carry 2D topological indices, never-

theless we consider the 1D index of hkx,ky
at each fixed value

ky . It is invariant under both particle-hole (�) and TR (	)
symmetries: We define

� = τ1, 	 = σ1τ3, (8)

and then

�hkx,ky
�−1 = −	hkx,ky

	−1 = −h∗
−kx ,ky

. (9)

Here both transformations satisfy 	2 = �2 = 1. We should
emphasize here that 	 is not the physical time reversal, which
should square to −1 for fermions with a half-integer spin. Here
	 is called “time reversal” because it represents a symmetry

operation which is antiunitary and relates k to −k. 	 and �

can be combined into a chiral symmetry defined as

C = �	, (10)

which gives

Chkx,ky
C−1 = −hkx,ky

. (11)

These symmetries put hkx,ky
at fixed ky in the BDI class as

defined in Ref. [51], as pointed out in Ref. [40], which is
characterized by a ky-dependent 1D topological index denoted
as Wky

. A unitary transformation is performed as

U = ei(π/4)σ2 u e−i(π/4)τ1 , (12)

where

u = 1
2 (σ0 + σ3) + 1

2τ3(σ0 − σ3). (13)

It transforms hk into an off-diagonal form

U−1hkU =
[

0 Ak

A
†
k 0

]
, (14)

where

Ak = �σ1 − i(Tkσ0 + �kσ1 + Bσ3). (15)

W (ky) is defined as the winding number of det Ak in the
complex plane as kx sweeps a 2π cycle, viz. [40,52],

Wky
= − i

2π

∫ 2π

kx=0

dz(k)

z(k)

= 1

2
[sgn(M+) − sgn(M−)]sgn(λ�), (16)

where z(k) = det Ak/| det Ak|, in which

det Ak = B2 − T 2
k − (� − i�k)2. (17)

M±(ky) are related to det Akx,ky
as

M+(ky) = det Akx=0,ky
, (18)

M−(ky) = det Akx=π,ky
. (19)

Wky
= ±1 requires the condition of M+(ky)M−(ky) < 0, and

then h(ky) is topologically nontrivial. Wky
changes discretely if

a gap closing state appears on the line of ky such that M+(ky) =
0, or M−(ky) = 0. The momenta of these states (kx,ky) satisfy
the requirement that kx = 0 or π , and another condition T 2

k +
�2 − B2 = 0 which determines ky .

Based on Wky
’s behavior over the range of [−π,π ), we plot

the bulk phase diagram for the 2D Hamiltonian Eqs. (1) and (2)
in the parameter plane μ-B shown in Fig. 1(a). The gapped
phases are characterized by ky-independent values of W : two
phases with W = ±1 are weak topological pairing states, and
the other two with W = 0 are trivial pairing states. For the
gapless phase, a momentum-averaged topological number is
defined as

r =
∫

dky

2π
Wky

. (20)

The values of Wky
vs μ and ky are depicted in Fig. 1(b) along

the line cuts L1–L5 in Fig. 1(a). Usually, Wky
changes the

value by only 1 at one step on varying ky , but along the line
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FIG. 1. (Color online) Bulk phase diagram of the 2D Hamilto-
nian Eqs. (1) and (2) in the μ-B plane with B > 0; that with B < 0
is symmetric with respect to the axis of B = 0. The parameter
values are t = 1, t⊥ = 0.5, λ = 2, � = 0.5. (a) The white solid lines
enclose the gapless phase and separate the rest into two topologically
trivial gapped phases and two nontrivial phases, respectively. Inside
the gapless phase, states in the diamond enclosed by the white
dashed lines exhibit edge modes associated with opposite winding
numbers, and those outside the diamond exhibit only edge modes
associated with the same winding number. The color scale encodes
the momentum-averaged winding number r defined in Eq. (20). The
gapless phase is suppressed as t⊥ decreases, and it is compressed into
the black dashed line at t⊥ = 0 (the single-chain limit). Points I–IV
are used in Fig. 2. (b) Wky

vs ky and μ are shown along the lines
of L1–L5 in (a), respectively. The white solid and dashed boundaries
of the regions of Wky

= ±1 represent that the gap closing points are
located at (0,ky) and (π,ky), respectively.

L3, Wky
can directly change between 1 and −1 without passing

0, which means that two Dirac points (0,ky) and (π,ky) appear
at the same value of ky . Note that the SO coupling λ is related

−1 0 1
−0.5

0

0.5

k
y
/π

E

(a)

−1 0 1
−0.5

0

0.5

k
y
/π

E

(b)

−1 0 1
−0.5

0

0.5

k
y
/π

E

(c)

−1 0 1
−0.5

0

0.5

k
y
/π

E

(d)

FIG. 2. (Color online) Edge spectra with open and periodical
boundary conditions along the x and y directions, respectively. (a),
(b), (c), and (d) correspond to points I, II, III, and IV marked in
Fig. 1(a), respectively. (a) Gapped trivial phase; (b) gapless phase
with edge modes associated with the same winding number; (c)
gapped weak topological phase; (d) gapless phase with edge modes
associated with opposite winding numbers. Parameters used are the
same as those in Fig. 1(a).

to Wky
only through its sign [cf. Eq. (16)]; therefore the phase

diagram Fig. 1 is independent of λ (up to an overall sign flip).1

Next we discuss edge spectra in the above different
phases. The open boundary condition is applied along the x

direction. In the topological trivial phase shown in Fig. 2(a),
the zero-energy edge modes are absent, while they appear
and run across the entire 1D edge Brillouin zone in the
gapped weak topological pairing phase shown in Fig. 2(b).
In the gapless phase, flat Majorana edge modes appear in the
regimes with W (ky) = ±1 and terminate at the gap closing
points [52–54]. These flat Majorana edge modes are lower
dimensional Majorana analogues of Fermi arcs in 3D Weyl
semi-metals [55]. This analogy goes further as in both cases
the gapless phase intervenes between topologically distinct
gapped phases.

The flat edge Majorana modes in the gapless phase can
behave differently. In Fig. 2(b), all the edge flat Majorana
modes are associated with the same value of Wky

. In this
case, these Majorana modes on the same edge are robust
at zero energy if TR symmetry is preserved, which means
that they do not couple. Nevertheless, TR symmetry may be
spontaneously broken to gap out these zero modes [26]. On
the other hand, for states inside the white dashed diamond in
Fig. 1(a), edge Majorana modes appear with both possibilities
of Wky

= ±1. In particular, in the case of μ = 0, the relation

1The value of λ determines the bulk gap in the topological
superconducting regime. Therefore, for a given temperature T ,
λ � T is required to observe this topological superconductivity
physics.
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W (ky) = −W (ky + π ) holds for edge Majorana modes as
shown in Fig. 2(d). Majorana modes with opposite winding
numbers on the same edge can couple to each other even
without TR breaking, and thus are not topologically stable.
r represents the net density of states of zero modes in the
edge Brillouin zone which are stable under TR-conserved
perturbations.

V. SELF-CONSISTENT SOLUTION

We now impose self-consistency on the pairing order
parameter �r , which is necessary for the case of intrinsic
pairings. The pairing interaction is modeled as

H� = −g
∑

r

nr,↑nr,↓, (21)

and the self-consistent equation is

�r = −g〈G|cr↓cr↑|G〉, (22)

where 〈G| · · · |G〉 means the ground-state average. We have
verified numerically that �r is nearly uniform inside the bulk.
Thus the bulk shares a phase diagram similar to that for uniform
pairing (cf. Fig. 1), except that the values of � should be
self-consistently determined.

Nevertheless, near edges �r varies spatially in the self-
consistent solutions. If the bulk is in the topological gapped
phase, the edge Majorana zero modes can couple with each
other by breaking TR symmetry spontaneously as shown
in Ref. [26]. Because of the band flatness, this effect is
nonperturbative. This will gap out the zero Majorana modes
and lower the edge energy. The system converges to an
inhomogeneous distribution of arg[�r ] near the edges as
shown in Fig. 3(a), even if this costs energy by disturbing the

(b) J
rr’

(a) Δ
r

y

x

FIG. 3. (Color online) Self-consistent solutions for �r (a) and
supercurrent Jr r ′ (b). Parameter values are Lx = 120, Ly = 8, B =
1.25, t = 1, t⊥ = 0.5, μ = −2, λ = 2, g = 5. Open and periodical
boundary conditions are used along the x direction (vertical) and y

direction (horizontal), respectively. Only the first ten sites from the
upper edge are plotted. The distributions of �r and Jr r ′ are reflection
symmetric with respect to the center line of the system. (a) The
direction and length of each arrow represent the phase and amplitude
of �r on site r . Its distribution is nearly uniform in the bulk but
exhibits spatial variations near the edge. (b) Each arrow represents
Jr r ′ on bond r r ′, which is prominent near the edge but vanishes in
the bulk.

B

(a)
Jmax
Δbulk

0

0.2

0.4

0.6

0.8

1

0.8 1 1.2 1.4 1.6 1.8

E

B

(b)

-0.3

0

0.3

0.8 1 1.2 1.4 1.6 1.8

Ly = 7

FIG. 4. (Color online) Self-consistent solutions for coupled
chains with varying B field. Open and periodical boundary conditions
are used along the x and y directions, respectively. Parameters are
Lx = 120, Ly = 8, t = 1, t⊥ = 0.5, μ = −2, λ = 2, and g = 5. In
both (a) and (b), the bulk gapless phase is marked as the shaded region,
which separates the topologically trivial (on its left) and nontrivial
(on its right) gapped phases. (a) The bulk pairing �bulk and the
characteristic edge current magnitude Jmax extracted as the maximal
current in the system. (b) The energy spectra close to E = 0. The
inset of (b) is for the case of Ly = 7. TR symmetry is spontaneously
broken between the two dashed red lines as evidenced by Jmax 
= 0.
Please note that at large values of B, the edge current vanishes, which
is an artifact due to the finite length of Lx . The decaying lengths
of edge Majorana modes are on the order of the superconducting
coherence length which is long due to the suppression of the pairing
gap. As a result, Majorana modes on opposite edges can hybridize
and are gapped out without breaking TR symmetry.

Cooper pairing [26]. This edge inhomogeneity in the pairing
phase leads to an emergent current pattern as depicted in
Fig. 3(b).

A natural question is under what conditions TR symmetry
is spontaneously broken near edges. We have carried out
extensive numerical studies and results for μ = −2 are plotted
in Figs. 4(a) and 4(b). TR symmetry is always broken in the
topological gapped phase such that Majorana edge fermions
are pushed to midgap energies, while TR symmetry remains
unbroken in the trivial gapped phase. The latter is easy to
understand because there are no Majorana fermions to begin
with. If the bulk is in the gapless phase (shaded area in Fig. 4),
the situation is more complicated. TR symmetry-breaking
solutions are found in most of the gapless phase. In this regime,
|r| < 1 and thus the number of stable Majorana modes on one
edge is less than the number of chains Ly . These modes are
associated with the same value of Wky

, and thus TR symmetry
breaking is needed to gap out these edge modes. There exists
a small region inside the gapless phase in which TR symmetry
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is unbroken in Fig. 4(a), which is largely due to the finite
value of Ly . We have tested that on increasing Ly the TR
breaking regime is extended, and thus we expect that it will
cover the entire gapless phase in the thermodynamic limit.
On the other hand, for the case of the gapless phase with
μ = 0 in which r = 0 for even values of Ly , our calculations
show that all the Majorana modes are gapped out without
developing currents. Instead a bond-wave order appears at the
wave vector of ky = π along the edge, which is consistent with
the fact that TR-invariant perturbations can destroy Majorana
zero-energy modes at r = 0. In general, we expect that TR
symmetry is spontaneously broken in the case of r 
= 0 in the
thermodynamic limit.

However, not all Majorana edge modes have to be gapped
out in the topological gapped phase. As shown in Fig. 4(b), for
the case of Ly = 8, all the edge modes become gapped due
to TR symmetry breaking, whereas for Ly = 7, one Majorana
mode survives at zero energy.2 The reason is that breaking TR
symmetry brings the system from class BDI to class D [51],
and the latter is characterized by a Z2 index. Physically it is
because (in the infinite-chain-length limit) only the Majorana
modes on the same edge can be paired and gapped out; thus,
beginning with Ly Majorana fermions per edge, for odd Ly ,
one of them will always remain unpaired. In short, if TR is
spontaneously broken, only Lymod2 Majorana fermions per
edge will persist at zero energy.

VI. DISCUSSION

Before closing, a few remarks are in order. (1) The
phenomenon of spontaneous TR symmetry breaking in
topological superconductors has previously been found in
a spinless p-wave superconductor in Ref. [26]. Our work
extends this observation in three ways: (a) Our results confirm
that spontaneous TR breaking also occurs in a different setup
with SO coupling and s-wave pairing, which is more relevant
to experiments. (b) Our model hosts a gapless phase, wherein
spontaneous TR breaking may also occur. (c) We also found
a parameter regime where Majorana modes with opposite
winding numbers can coexist. This provides another route to
gap out the Majorana modes without invoking TR breaking.
(2) In this work, we considered SO coupling only in the
x direction, which can be exactly simulated in cold atom
systems. However, in solid-state physics, both Rashba and
Dresselhaus SO couplings will involve SO coupling along
the y direction as well (unless Rashba and Dresselhaus SO
coupling are of equal strength, in which case SO coupling
along y will vanish). This will break TR symmetry [as defined
in Eq. (8), which is not the usual physical TR symmetry] and

2The remaining Majorana mode is localized along the x direction,
but delocalized along the y direction. A similar result can be found
in Ref. [27].

bring the system from class BDI to D. In the presence of a
y-direction SO coupling term [∼sin(ky)σ2τ3], the Majorana
flat bands will develop dispersion, either connecting upper
and lower bulk bands or forming isolated midgap states
which may cross zero at ky = 0 or π , consistent with a Z2

description [28,37]. (3) Disorders such as spatial variations
of chemical potential (∼σ0τ3) and Cooper pairing amplitude
(∼σ2τ2) can be added without changing any of our conclusions
(provided the disorder is not strong enough to close the bulk
gap). This is because these two terms are invariant under both
particle-hole (�) and TR (	) symmetries; hence the system
still belongs to the BDI class. (4) Finally, although we modeled
the constituent nanowires each as a 1D lattice, switching to a
continuum formulation in the chain direction should not affect
the formation of edge Majorana modes (that is, before they
couple and gap out) [6,7]. Thus we expect the edge physics
obtained here to be insensitive to how the bulk of the chains is
formulated in terms of continuum vs lattice.

VII. SUMMARY

We have studied quantum wire arrays with SO coupling
and s-wave superconductivity in an external Zeeman field.
The relation between edge Majorana zero modes and the bulk
band structure is investigated in both topologically nontrivial
gapped phases and the gapless phase. The coupling between
Majorana modes and superfluid phases leads to spontaneous
TR symmetry breaking. Our results have several experimental
bearings. For proximity-effect-induced superconductivity, the
number of edge Majorana fermions in the gapless phase can
be tuned by the Zeeman field from zero all the way up to
the number of chains. This could be detected as a prominent
change in the height of zero-bias peaks in tunneling spec-
troscopy experiments. For the intrinsic superconductivity, edge
supercurrent loops resulting from spontaneous TR breaking
will induce small magnetic moments, which can be detected
using magnetically sensitive experiments such as nuclear
magnetic resonance or neutron scattering. The fluctuation in
the number of persisting Majorana modes between 1 and 0, in
the TR-broken topological gapped phase, may also show up in
tunneling spectroscopy.

Note added. Recently, we became aware of a paper on a
similar topic [37] and another related work [56].
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