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Exact ground state and elementary excitations of the spin tetrahedron chain
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We study the antiferromagnetic spin exchange models with S=1/2 and S=1 on a one-dimensional tetrahe-
dron chain by both analytical and numerical approaches. The system is shown to be effectively mapped to a
decoupled spin chain in the regime of strong rung coupling, and a spin sawtooth lattice in the regime of weak
rung coupling with spin 2§ on the top row and spin S on the lower row. The ground state for the homogeneous
tetrahedron chain is found to fall into the regime of strong rung coupling. As a result, the elementary excitation
for the spin-1/2 system is gapless whereas the excitation for the spin-1 system has a finite spin gap. With the
aid of the exact diagonalization method, we determine the phase diagram numerically and find the existence of
an additional phase in the intermediate regime. This phase is doubly degenerate and is characterized by an
alternating distribution of rung singlet and rung spin 2S. We also show that the SU(3) exchange model on the
same lattice has completely different kind of ground state from that of its SU(2) correspondence and calculate

its ground state and elementary excitation analytically.
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I. INTRODUCTION

The study of quantum antiferromagnetic spin models with
strong frustration has attracted great attention over the past
decades. Early investigations of the frustrated quantum mag-
nets were partly motivated by the work of Anderson to
search the resonating-valence-bond (RVB) ground state in
such systems.! In the frustrated quantum magnets, the mag-
netic ordering is generally suppressed by the frustration.
Some well-studied frustrated magnetic systems include, for
example, the kagome lattice and pyrochlore lattice, in which
the interplay between frustration and quantum fluctuation
leads to rich varieties of phenomena. Recently, the frustrated
magnets are believed to be prominent candidates of realizing
spin liquid states with exotic ground state and deconfined
fractional excitations.”* While the mechanism of deconfin-
ment in two-dimensional (2D) magnetic systems is less clear,
the deconfinement of spinons in quasi-one-dimensional mag-
netic system, which is closely related to the phenomenon of
spin charge separation, is well investigated.>® Since the
1980’s, a large number of low-dimensional frustrated mag-
nets have been synthesized experimentally.’ Generally
speaking, strongly geometrical frustration in these systems
allows the simple dimerized state to be the ground state of
the low-dimensional frustrated spin system and opens a spin
gap. So far, a variety of quasi-one-dimensional frustrated
models have been studied theoretically.'®-!> Additionally, im-
portant progress has been made in trapping cold atoms under
a highly controllable way very recently, and thus it stimulates
intensive investigation on how to simulate the magnetic sys-
tems using cold atoms. A number of schemes have been pro-
posed to implement a variety of quantum spin models in
optical lattices.'?

In this paper, we investigate both the ground- and excited-
state properties of the spin models on a one-dimensional
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(ID) tetrahedron chain as shown in Fig. 1, with site spins S;
residing in four corners of each tetrahedron. The basic unit,
i.e., a tetrahedron is composed of four spins with equal anti-
ferromagnetic exchanges between each pair of spins. The
tetrahedron chain can be also viewed as a 1D pyrochlore
strip in a 2D pyrochlore lattice, in which only two of four
corners of each tetrahedron are shared by a neighboring tet-
rahedron. Generally, a three-dimensional (3D) pyrochlore
lattice is a network of corner-sharing tetrahedra and a 2D
pyrochlore model, named also as a checkerboard-lattice
model, is obtained by a projection of the 3D lattice on a
plane. Different from the 1D pyrochlore strip considered in
this article, for both the 3D and 2D pyrochlore lattices, each
corner of the tetrahedron is shared by a neighboring tetrahe-
dron. As one of the most frustrated antiferromagnets, the
model of spin pyrochlore lattice has been investigated by a
variety of techniques including the semiclassical large-S

FIG. 1. (Color online) Schematic pictures of (a) the homoge-
neous spin tetrahedron chain, (b) the spin tetrahedron chain corre-
sponding to model (2).
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limit, large-N expansion of the SU(N) model, the contractor
renormalization method based on the cluster expansion, and
the bosonization method on the anisotropic limit.'*-'7 In
spite of the intensive research, even the ground state proper-
ties of the 3D pyrochlore lattice are not well understood. For
the 2D pyrochlore lattice, the numerical results based on ex-
act diagonizations have shown that the ground state has
plaquette order.'® However, for the 1D pyrochlore strip, we
can determine its ground state and elementary excitation in
an exact manner. With the aid of numerical diagonalization
of the corresponding spin lattice systems with small sizes,
we also investigate the quantum phase transitions of the
ground state due to the change of exchange strengths along
perpendicular rungs.

The spin model on a 1D pyrochlore strip as shown in Fig.
1 is described by the Hamiltonian:

H=JX§;-§,, (1)
(i)
where (ij) denotes sum over all the nearest neighbors along

the tetrahedron chain and 3,» represents the spin operator re-
siding in site i. In this work, we study both the spin-1/2 and
spin-1 models on the pyrochlore strip. Our results show that
the excitation spectrum for the spin-1/2 system is gapless
and the elementary excitation of the spin-1 system has a
finite spin gap. This model can be extended to the cases
where the strengths of bonds among the tetrahedra are not
homogeneous. Here we only consider the inhomogeneous
case as shown in Fig. 1(b), where we use J | to represent the
exchange strength along the vertical rung of each tetrahe-
dron. For convenience, we rewrite the Hamiltonian of the
spin tetrahedron chain corresponding to Fig. 1(b) as follows:

Hy= JE [gi,] (Si,z + 3;‘,3) + (gi,l + gi,Z + 3i,3)§i+],]]

+J¢E 3i,2'§i,3~ (2

It is obvious that model (2) reduces to model (1) when J |
=J, i.e., the homogeneous tetrahedron chain (1) is a special
case of model (2). Since the model can be represented as a
sum of local Hamiltonian on each tetrahedron, a classical
ground state is obtained whenever the total spin in the tetra-
hedron is zero for a homogeneous model. It is straightfor-
ward that the classical ground states have a continuous local
degeneracy.

II. SPIN-1/2 LATTICE

First, we consider the spin 1/2 case. As we have men-
tioned in the Introduction, there is a fundamental different
property between the 1D pyrochlore strip and its high-
dimensional analogies: not all spins on a tetrahedron are
equivalent. The spins on the vertical rung of the tetrahedron
are not coupled to the neighboring tetrahedron. We define the

total spin on each vertical rung as ]A"i=§iq2+§iq3. It is obvious

that flz is conserved. This property enables us to simplify the
1D model greatly.

PHYSICAL REVIEW B 74, 174424 (2006)

For the tetrahedron chain model (2), it is convenient to
reformulate the Hamiltonian as follows:

H, =J2, 3i,1§i+1,1 +JE (gi,l + §i+1,1) T
J A
+ jE T>—NJ S(S+1), (3)

where f"f:Ti(T,»+1) with T;=0,...,2S. In the strong cou-
pling limit J, — oo, a pair of spins on each rung would form
a singlet (spin dimer) with 7;=0. This implies that the spins
in the horizontal direction along the chain is effectively de-
coupled with the spins on the vertical rungs. Therefore, the
ground state of H, is a product of the ground state of spin
chain and rung singlets. Explicitly, it is represented as fol-

lows:

GS) =|BA) ® I1[S;.5:5]. (4)

where |BA) denotes the Bethe-ansatz ground state wave
functions of the 1D Heisenberg chain ﬁchain=-]2i§i,1§i+1,1
and [S;,,8;3]=([T]i2l1]i3=[11;2[1]i3)/+2 is the dimer sin-
glet across the ith vertical rung. The corresponding ground
state energy is

3
A _ BA =
Eg =g (N)= NI, (5)

where EfA(N) is the ground state energy of the N-site
Heisenberg spin-1/2 chain. From the Bethe-ansatz solution
of Heisenberg model, we know the exact ground state energy
EJA(N)/N=-0.4431J at the infinite length limit.

In fact, utilizing the Raleigh-Ritz variational
principle,'"192! we can exactly prove the state given by Eq.
(4) is the ground state of Hamiltonian (2) as long as J,
=2J. To see it clearly, we can rewrite the Hamiltonian (2)
with J | =2J as the sum of a Heisenberg chain and 2N pro-
jection operators, which reads

P 3J A
Hy= 7> SiaSir1+ > ?Pyz(si,l’si,bsiﬁ)

3J A Ao
+ 2 ?[P3/2(Si,2’si,3’si+l,l) - 1], (6)
where
3208 & & oo e Lo 3
P (Si,l,Si,z,Si,3)=§ (Si1+8iz+S;3) 2 (7)

is a projection operator which projects a three-spin state
composed of §; ;, S;,, and S, 5 into a subspace with total spin
3/2. Now it is clear that the state given by Eq. (4) is
the ground state of the global Hamiltonian because it is
simultaneously the ground state of each local sub-
Hamiltonian.!?%2! With the same reasoning, the state (4) is
of course the ground state of Hamiltonian Eq. (2) for J
>2J. It is not hard to check that the state (4) is an eigenstate
of the global Hamiltonian H, by utilizing the identities

(S,v,2+.§‘,v,3)[Si,2,Si,3]=0, however, such an eigenstate is not
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FIG. 2. Three types of ground state for the spin-1/2 and spin-1
pyrochlore strips. The open and close circles denote the spins with
S=1 and S=1/2, respectively, for the spin-1/2 pyrochlore strip. For
spin-1 pyrochlore strip, the open circles represent the spins with §
=2 and the close circles represent the spins with S=1.

necessary the ground state for arbitrary J,. We note that the
condition J ; =2J for the existence of the ground state given
by (4) is just a sufficient condition which is a very strong
restriction. In fact, it can be released to a wider parameter
regime. We expect that there is a critical value J and the
system evolves into another quantum ground state when J |
is smaller than J¢ .

For the homogeneous point J, =J which we are particu-
larly interested in, although the above proof is no longer
applicable, we can still argue that Eq. (4) remains the ground
state, and prove this result by using the numeric exact diago-
nalization method. With the aid of numerical diagonalization,
we may determine the phase boundary of the model (2) pre-
cisely. Since the total spin in every rung is conserved, the
vertical rungs are either in singlets or triplets for a spin-1/2
pyrochlore strip. Therefore, the relevant eigenstate of the py-
rochlore strip can be classified by the values of the total spins
on the vertical rungs.?>?? For convenience, we use E(N,M)
to represent the eigenenergy of the state with N-M spin sin-
glets and M triplets on the vertical rungs. It follows that the
eigenenergy is given by

3
E(N’M)=_ZNJL+MJL +JE 1 (N,M), (8)

where E;/ (N, M) represents the energy of the lattice com-
posed of N spins with S=1/2 on the sites of the lower row
and M spins with T=1 on the top row. For each class of state
with N-M spin singlets and M triplets on the vertical rungs,
there are altogether C% different configurations.

It is instructive to first consider the following two kinds of
configuration which correspond to two opposite limits of the
vertical exchange: (i) all the states on the vertical rungs are
spin singlets and (ii) all the states on the vertical rungs are
spin triplets. In the first case, the original model can be
mapped to a spin chain model as displayed in Fig. 2(a) and
the corresponding eigenenergy is given by
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3
E(N,O)=—ZNJJ_ +JE1/2(N), (9)

where Ej,(N)=E;;,(N,0) is the energy of the N-site
Heisenberg spin-1/2 chain and the Bethe-ansatz ground state
energy Ef,(N)/N=-0.4431 as N—. In the second case,
the tetrahedron chain can be effectively described by a
A-chain model consisted of N spins with S=1/2 on the sites
of the lower row and N spins with 7=1 on the sites of top
row as shown in Fig. 2(c) and the eigenenergy can be repre-
sented as follows:

1
E(N7N)=ZN‘IL-'_JEI/Z,](N,N)’ (10)

where Ej, (N,N) denotes the eigenenergy of the corre-
sponding A-chain model. The mixed spin A chain can be
viewed as an alternating spin-1/2-spin-1 chain with an addi-
tional next-nearest neighbor interaction between the spins
with §;=1/2. It is well known that there is a ferrimagnetic
long-range order in the ground state of quantum ferrimag-
netic Heisenberg chain.?*-?® The additional interaction be-
tween the spins with S=1/2 is a kind of frustration which
makes it harder to compensate the spin with S=1, therefore
the long-range order still exists. Although no exact analytical
results for the mixed spin A chain are known, its ground state
energy may be determined by numerical exact diagonaliza-
tion method. For a mixed spin A chain with size of 8+8, we
get its ground state energy given by Ef, (8,8)/16
=-0.646 773. We note that the ground state of a spin A chain
or a spin sawtooth model with S§;=1/2 is exactly
known. 19:20.27

It is clear that the state with all singlets or triplets on the
rungs are the ground state of the tetrahedron chain in the
limit of J, — o and J, — -, respectively. Flipping a rung
singlet into triplet costs an energy of J |, therefore the effect
of the antiferromagnetic coupling J, is to prevent the spins
on the rung forming triplet. On the other hand, a triplet in the
rung acts effectively as a spin with S=1 which lowers the
total energy by interacting with its neighboring spins with
S=1/2 on the lower rung. The competition between the two
processes gives rise to the complexity of the phase diagram
for the tetrahedron chain. An interesting question arising here
is whether some intermediate phases exist between the
phases with fully paired singlets and triplets on the rungs. To
determine the phase boundary of (2) numerically, in prin-
ciple, we need consider all the different configurations of 7;
on the rungs. Among a given class, we find that the configu-
ration with the spins on the top row repelling each other has
lower energy. For example, as shown in Fig. 2(b), the con-
figuration with alternating spin 1 and spin O on the top row
has the lowest energy among the C%/ 2 configurations. After
considering all the rung configurations, we get a phase dia-
gram as shown in the Fig. 3. As expected, there is an inter-
mediate phase which is effectively described by the ground
state of its equivalent model as shown in Fig. 2(b). Corre-
sponding to Fig. 2(b), there is another equivalent configura-
tion which is obtained by totally shifting the spins on the top

174424-3



CHEN et al.

Mixed
] ]

Ferrimagnet Rung Dimers + spin-1/2 chain

€ Cq

FIG. 3. The phase diagram for spin-1/2 tetrahedron chain with
variable vertical exchange J, in the parameter space of c=J,/J.
For ¢ > ¢y, the system is in a decoupled phase whose ground state is
a product of rung singlets and the critical spin liquid phase on the
horizontal spin-1/2 chain; For ¢, <c<c¢y, the ground state is a
double degenerate mixed state with the alternating spin singlet and
spin triplet on the rungs; For ¢ <c,, the ground state is a ferrimag-
netic state with spin triplet on the rungs.

row a lattice space. In this phase, the triplet and singlet on
the rungs distribute in an alternating way and the ground
state is doubly degenerate.

Next we will give a description on how to determine the
phase diagram as shown in Fig. 3. Since the original pyro-
chlore strip can be classified by the values of the total spins
on the vertical rungs or equivalently by M, labelling the
numbers of the rung triplets, the ground-state energy of our
tetrahedral spin chain, for a given value of J and J,, will be
given by the lowest value of Eq. (8) with M=0,1,...,N. In
Fig. 4, we show as a function of c¢=J,/J all the lowest
eigenenergies for the lattice sizes with 4, 6, and 8 tetrahedra.
The energies corresponding to the point of ¢=0 (intercept
points with the vertical axis) are the lowest energies of
E ), 1(N,M), from above to below, with M=0,1,...,N. The
slope values of the straight lines depend upon the number M.
Our numerical analysis shows that the ground state in the
whole parameter space ¢ is determined by three kinds of
configurations with M=0,N/2,N, corresponding to the con-
figurations of (a), (b), and (c) displayed in Fig. 2 and their
crossing points determine the phase transition points. For
simplicity, we omit all the excited energy levels for the case
of N=8 in the Fig. 4. From our numerical results, we obtain
the up critical value ¢;=0.9529 and the down critical value
¢,=0.7214 for the original pyrochlore strip with a size of 24
sites (8 tetrahedra or N=8). Similarly, we get ¢,=0.881 86
and ¢,=0.705 46 for N=4, ¢;,=0.929 52 and ¢,=0.723 51 for
N=6. Here ¢, corresponds to the crossing points of lines (a)
and (b), whereas ¢, corresponds to the crossing points of
lines (b) and (c). Since we need much smaller memory size
to diagonalize systems of (a) and (b) than system of (c),
therefore we can calculate even larger system to determine
cy. For example, we get ¢;=0.96228 for N=10 and c,
=0.967 52 for N=12. In Fig. 5, we analysis the finite size
scaling of c¢; and c¢,. The linear fit of ¢; and c, gives c;
=0.9767+0.0020 and ¢,=0.730 21+£0.005 77 for N— . We
can also determine the phase boundaries c¢; and ¢, in an
alternative way. By extrapolating the ground state energy of
(a) and (b) to infinite size, we then determine ¢ and ¢, by the
crossing of the energy levels of (a), (b) and (b), (c), respec-
tively. In Fig. 6, we display the finite size scaling of the
ground state energies of (a), (b), and (c). The ground state
energies per site, obtained by linear fit to the infinite limit,
corresponding to the configurations of (a), (b), and (c) are
0.442 61+0.000 19, 0.620 33+0.000 91 and
0.646 75+0.000 01, respectively. By this way and using Eq.
(8), we get ¢,=0.9757 and ¢,=0.726 01 in the limit of infi-
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FIG. 4. (Color online) The lowest energies of E(N,M)/J as a
function of ¢=J,/J for N=4,6,8. The solid, dashed, and dotted
lines corresponding to the case with M=N, M=N/2, and M=0 or
(c), (b), (a) as displayed in Fig. 2.

nite size. If we use the ground state energy obtained by Bethe
ansatz for (a), we get ¢;=0.9748.

Before ending the discussion of the spin-1/2 pyrochlore
strip, we would like to remark on a generalized spin pyro-
chlore strip where the horizontal exchange is variable. With
the same reasoning as that of the model (2), we can easily get
the sufficient condition for the existence of the fully dimer-
ized state on all the vertical rungs, which reads J; =2J and
is irrelevant with the horizontal exchange. When the horizon-
tal exchanges are zero, the model has totally different ground
sates and it falls into the class of 1D diamond mode,?8-2°
which has also fully dimerized state on the vertical rungs as
the ground state but the ground state is highly degenerate
with a degeneracy of 2V because the unpaired N spins are
completely free.
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FIG. 5. (Color online) The phase boundaries ¢; and ¢, versus
the sizes of the system.

II1. SPIN-1 LATTICE WITH SU(2) SYMMETRY

The above method can be directly extended to deal with
the spin-1 case. For the spin tetrahedron chain (2) with S
=1, we can prove that the ground state of (2) is a product of
fully dimerized singlets on the rungs and the ground state of
horizontal spin-1 chain as long as J, =4J. Explicitly, the
ground state can be represented as follows:

|GS) = |[Haldane) ® [][S,,5;5] (11)

where |Haldane) denotes the ground state of the 1D spin-1
chain and

1
1

[Si2.8i3]= 3 > (- 1)m+1|m>i,2|_ mis
NI m=-1

is a spin singlet across the ith vertical rung. The proof is
rather similar to its spin-1/2 correspondence and is straight-
forward when we rewrite the Hamiltonian (2) in the follow-
ing form:

Hy= E [hA(gi,l’si,Z’siﬁ) + hA(Si,Z’Si,B’giH,I)] + JE Si,1§i+1,1
(12)

with hA(Si,l ,3‘,4,2,3’,4,3) =J§i,l(§i,2+§i,3) + %Si,z'si,S and
ha(Si2.8i3.8i1.)=J(S;2+8:3)S 01 +%§i,2'§i,3- Now it is
easy to find that the ground state of h, is a product of paired
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FIG. 6. (Color online) The ground state energies of systems (a),
(b), and (c) versus the sizes of the system.
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FIG. 7. The phase diagram for spin-1 tetrahedron chain. For ¢
>cy, the system is in a decoupled phase whose ground state is a
product of rung singlets and Haldane phase on the horizontal chain;
For ¢, <c<cy, the ground state is a double degenerate mixed state
with the alternating spin singlet and spin quintet on the rungs; For
¢ <c,, the ground state is a ferrimagnetic state with spin quintet on
the rungs.

singlet on the rung and a free spin on the unpaired site as
long as J, =4J. By the variational principle, we conclude
that the state (11) is the ground state of the spin-1 model
given by Eq. (2) for J, =4J. Certainly, the sufficient condi-
tion for the existence of a fully dimerized ground state on the
rung can be released to a lower bound. In principle, we can
determine it numerically following a similar scheme of the
spin-1/2 case.

Since the total spin 7; on each vertical rung can be 0, 1 or
2, the spin-1 tetrahedron chain can be mapped to a mixed
sawtoothlike model according to its configurations of the
vertical rungs. Several relevant configurations are: (i) Spin

singlets on all the vertical rungs with the eigenenergy given
by

Er.o=-2NJ, +JE,(N), (13)

where E;(N) denotes the eigenenergy of a spin-1 chain of N
sites. From the known numerical results,’® we get ground
state energy per site E(N)/N=-1.4051 in the large N limit.
(ii) Spin triplets on all the vertical rungs with the eigenen-
ergy given by

ET=1=—NJJ_ +JE1‘1(N,N). (14)

Here E, (N,N) represents the eigenenergy of a spin-1 A
chain of 2N sites.3! (3) Spin quintet (7=2) on all the vertical
rungs with the eigenenergy given by

Er,=NJ, +JE;,(N,N). (15)

Here E| ,(N,N) represents the eigenenergy of a mixed spin-1
and spin-2 A chain with spin 1 on the site of the lower row
and spin 2 on the site of top row. Just similar to the spin-1/2
pyrochlore strip, we need to consider all the different con-
figurations of the rungs. Numerically, we find the phase dia-
gram is rather similar to that of the spin-1/2 case. As dis-
played in Fig. 7, there is also an intermediate phase between
the fully paired singlet state with 7;=0 and state with all T;
=2. The intermediate state is twofold degenerate with the
configuration of alternating singlet and quintet on rungs.
Such a state can be schematized in terms of Fig. 2(b) with
the open circle denoting the state with 7;=2. From our nu-
merical results, we obtain ¢;=0.915 96 and ¢,=0.884 04 for
the original tetrahedron chain with a size of 18 sites (N=6)
as well as ¢;=0.9134 and ¢,=0.8452 for N=4. With similar
reasoning as the spin-1/2 case, we can get ¢;=0.941 89 for
an even larger system with N=8. Linear fitting of datum of
¢, versus 1/N? and extrapolating it to the limit of the infinite
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size, we get ¢;=0.959 83+0.027 48 for N— .

As a natural generalization, it is straightforward to extend
the spin pyrochlore model with SU(2) symmetry to the case
with arbitrary spin S. For the spin-S model, a sufficient con-
dition for the existence of rung-dimerized ground state is
J, =4-3/(s+1) for a half-integer spin and J, =4 for inte-
ger spin. In the dimerized phase, the horizontal chain is de-
coupled with the spins on the rungs and therefore the el-
ementary excitation of the tetrahedron chain is gapless for
half-integer-spin model or opens a gap for the integer-spin
model.

IV. SPIN-1 LATTICE WITH SU(3) SYMMETRY

For the spin-1 system, the most general Hamiltonian has a
biquadratic exchange term besides the bilinear term and it
exhibits much richer quantum phase structures than the bi-
linear model.*> When the biquadratic exchange has the same
strength of the bilinear exchange, the Hamiltonian H

owns the SU(3) symmetry. For spin-1 systems of transition
metal compounds where two electrons are coupled ferromag-
netically by Hund’s rule, the biquadratic exchange term
originates from a fourth order perturbation process. Its mag-
nitude is thus small compared to the bilinear terms, and thus
the SU(3) symmetry is not applicable. However, in the cold
atomic physics, most atoms have high hyperfine multiplets,
thus it is possible to achieve high symmetries. For example,
the ®Li atom is with nuclear spin 1 and electron spin 1/2. In
a weak magnetic field, electron spin is polarized, while
nuclear spin remains free. Recent studies indicated that the
three nuclear spin components can be described by an ap-
proximate SU(3) symmetry.’

It is well known that the SU(3) exchange model on a
chain has quite different properties from that of the SU(2)
bilinear model. Therefore we may expect that the SU(3) tet-
rahedron chain

3
H=J¢2 h(gi,z»sm) +JE E h(si,wsiﬂ,l)

i a=1

+JZ_ [h(ﬁi,l,ﬁi,z) +h(§i,1’§i,3)] (17)

also displays different phase structure from that of its SU(2)
correspondence (2). The model with J, =J was initially pro-
posed by three of us with Zhang in Ref. 34 as an example of
the SU(N) generalization of the Majumdar-Gosh model,
however, no analytical results have been given there. Ob-
serving that the Hamiltonian can be written as a sum of the
Casimir of the total spin in each tetrahedron and the repre-
sentations with the smallest Casimir made out of four sites in
the fundamental representations is three dimensional, we
concluded that the state of trimer products is the GS of the
SU(3) tetrahedron chain. The ground state is twofold degen-
erate. Explicitly, the ground state of the SU(3) spin tetrahe-
dron chain can be represented as follows:
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|GS); = H T(S;1.5:2.5;3) (18)

or

|GS), = H T(S;2,8:3:Si41.1) s (19)
where
1
T(8;,8),51) = % By @i Bj> Vi

represents a trimer state which is a singlet composed of three
spins on site i,j, and k. Here «; denotes the spin on site i
with the value « taking 1, 0, or —1 and €,4, iS an antisym-
metric tensor.

In the following, we shall calculate the ground state en-
ergy and elementary excitation of Eq. (17) analytically. For
convenience, we make a shift of constant to the Hamiltonian
(17) by replacing h(ﬁi,ﬁj) with Igi!j=h(§i,.§‘j)—l. We note
that modification of J, does not lift the degeneracy of the
left- and right-trimer states. For J, >J, the state of trimer
products is of course the ground state of the SU(3) tetrahe-
dron chain and the corresponding ground state energy is

E,=—2NJ-NJ,.

aBy

Breaking a singlet of trimer will cost a finite energy, thus the
elementary excitation of the SU(3) tetrahedron chain has an
energy gap. For a three-site cluster, the trimer singlet is rep-
resented by a Young tableaux [1°] and the first excited state
above the singlet are represented by the Young tableaux
[2'1]. When a trimer singlet is broken, it decomposed into a
monomer and a paired dimer. For a system with degenerate
ground state, the monomer and dimer can propagate freely in
the background of trimerized ground state and lower the en-
ergy further. In principle, two type of excitations are avail-
able in a pyrochlore chain, either a magnonlike excitation
produced by flipping a trimer state into its excited state or a
pair of deconfined objects composed of a dimer plus a mono-
mer. For our system with doubly degenerate ground state, the
spinonlike excitations have lower energy.

The deconfined excitations behave like domain-wall soli-
tons which connects two spontaneously trimerized ground
states. Explicitly, we represent an excited state with a dimer
at site 2m—1 and a monomer at site 2n is represented as

\I’(mJl) =0 T(Sm—l,l7Sm—l,27Sm—l,3)m(Sm,l)’
T(Sn1,2’Sm,3’Sm+l,l) e T(Sn—l,Z’Sn—l,3’Sn,l)’

d(Sn,29Sn,3)T(Sn+l,l7Sn+1,2’Sn+1,3) e
where d(Si,S<)=é(|ai,8j>—|,8,-aj>) with a# B represents a

dimer. The corresponding momentum-space wave function is

\I,(km’kd) = E

Isms=n=M

eimkm+inkd\[,(m’ n) .

The excitation spectrum can be calculated directly by using
the above variational wave function. Because there exists no
intrinsic mechanics responsible for binding the dimer and
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monomer together to form a bound state in a spontaneously
trimerized system, it is reasonable to assume that the dimer
and monomer are well separated and they could be treated
separately. Similar schemes have been used to evaluate the
excitation spectrum in the spin-sawtooth system.!?2% Under
such an approximation, the excitation spectrum can be rep-
resented as a sum of monomer part and dimer part, i.e.,
w(k,,,k;) = o(k,)+w(k,). The state W(n) is not orthogonal
with the inner product given by

[’ =n]
W (") (n)) = (i) ,

thus W(k,) has a nontrivial norm (W(k,)||W(k,))=4/(5
—3 cos ky). With a similar scheme as solving the spectrum of
excitations of the spin-1/2 model,'+1%2% we get the spectrum
for the dimer

3 cos ky
4

5
w(ky) = ZAd - Ay (20)

with A;=2J. In the large J, limit, a monomer can only hop
around in the left and right phases along the horizontal di-
rection without breaking additional trimer singlet, therefore
its excitation spectrum forms a flat band, i.e., w(k,)=0.
When J, is close to J, the monomer actually can move
around several corners, i.e., the monomer can be in the site
of (m,2) and (m,3) either, therefore the wave function for a
monomer has resonating structure at the mth triangle in the
pyrochlore. The process of hopping from site (m, 1) to (m,2)
or (m,3) accompanies with an energy cost of J -J, and thus
the excitation spectrum is still a flat band for the homoge-
neous pyrochlore with J, =J. For the inhomogeneous case,
we take the monomer excitation as a three-site cluster con-
sisting of three single monomers at sites (m,1), (m,2), and
(m,3), i.e.,
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1
\p(m)=T§ com(Syg) e+ m(Syn)
\/

+ "'m(Sm,S) ]

Similarly, after considerable algebra, we get the spectrum for
the monomer

2 6 cos k,,

w(k,,) = gAm A

5 o 21

with A,,=J -J.
V. CONCLUSIONS

We have proposed and studied a class of frustrated lattice
which can be viewed as a 1D strip of the pyrochlore lattice or
a tetrahedron chain. For the general Heisenberg exchange
model, we give an exact proof for the existence of the
ground state consisting of the rung-dimerized state and the
ground state of the decoupled chain. The phase diagrams of
the spin-1/2 and spin-1 tetrahedron chain are given and the
phase boundaries are precisely determined for the small-size
systems. For both the spin-1/2 and spin-1 systems, there
exist three phases, say, the fully dimerized singlets on the
rungs plus a decoupled chain, a mixed phase with alternating
spin singlet and state with total rung spin 2S5 on the rungs,
and a ferrimagnetic phase with long-range order, as the
strength of vertical exchanges varies from infinity to minus
infinity. We also studied the SU(3) spin-exchange model on
the 1D tetrahedron chain, for which the ground sate is a
double degenerate trimerized state and the elementary exci-
tations are fractionalized topological excitations. Our results
indicate that the properties of the ground state for the pyro-
chlore systems with half-integer and integer spins or the sys-
tems with the same spins but different internal symmetries
[SU(2) and SU(3) for spin-1 systems] are quite different.
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