Lect 12 Analytic properties of Scattering amplitude and Levinson theorem

Radial Solutions: So far, we solve the radial equations using $u(r, k) = r R(r, k)$ as a standing-wave like solution. $u(r, k)$ is an even function of k because the radial equation only involves k^2. We next consider the traveling wave solutions (thus k can take both positive and negative values). Consider a solution of the radial Eq with the following boundary condition

$$\phi_+(k, r) \rightarrow i^l e^{-i kr}$$

The solution $\phi_+(k, r)$ is irregular at the origin, $R \phi_+(k, r) \sim k^{l+1} e^{-i kr}$.

Another solution $\phi_-(k, r) \rightarrow i^l e^{i kr}$, which is also irregular at the $r \to 0$.

The standing wave solution can be written as linear combinations of $\phi_+(k, r)$ and $\phi_-(k, r)$, as

$$u_0(k, r) = \frac{i^l}{k} k^{l+1} \left(\tilde{f}_+(-k) \phi_+(k, r) - (-1)^l \tilde{f}_-(k) \phi_-(k, r) \right)$$

this solution satisfies the boundary condition at the origin

$$\lim_{r \to 0} \frac{r^{l+1}}{(2l+1)!!}$$

which is independent of k. In this case, complex analysis theorem (Poincare) shows that $u_0(k, r)$ is an entire function of k.

At \(r \to \infty \), \(U_e(k, r) \) approaches

\[
U_e(k, r) \underbrace{\to} \lim_{r \to \infty} \frac{1}{2} \left(\frac{i}{k} \right)^l [\tilde{f}_e(-k) e^{-i kr} - (-)^l \tilde{f}_e(k) e^{i kr}]
\]

Discussion:

(1) The radial equation is real, thus \(\phi_e^*(k, r) \) should also be a solution, and thus proportional to \(\phi_e(-k, r) \). More carefully, we have

\[
\left[\phi_e(-k, r) \right]^* = (-)^l \phi_e(k, r).
\]

If \(k \) is complex for later convenience, we have

\[
\left[\phi_e(-k^*, r) \right]^* = (-)^l \phi_e(k, r),
\]

for real values of \(k \).

(2) For the function \([U_e(k, r)]^* = U_e(k, r) \), we want it to be real.

And also for complex \(k \), we want \([U_e(k^*, r)]^* = U_e(k, r) \).

For this requirement, we need to assign relation between \(\tilde{f}_e(k) \) and \(\tilde{f}_e(-k) \).

\[
U_e(k, r) = -\frac{i}{2} (k^*)^{-l-1} \left[\tilde{f}_e^*(k) \phi_e^*(k, r) - (-)^l \tilde{f}_e^*(k) \phi_e^*(-k, r) \right]
\]

\[
= -\frac{i}{2} (k^*)^{-l-1} \left[\tilde{f}_e^*(-k) (-)^l \phi_e(-k^*, r) - \tilde{f}_e^*(k) \phi_e(k^*, r) \right]
\]

\[
= U_e(k^*, r) = \frac{i}{2} (k^*)^{-l-1} \left[\tilde{f}_e(-k^*) \phi_e(k^*, r) - (-)^l \tilde{f}_e(k^*) \phi_e(-k^*, r) \right]
\]

\[
\implies \tilde{f}_e(-k^*) = \tilde{f}_e(k^*)
\]
$\text{3. If we compare the solution } u_e(kr) \xrightarrow{r \to \infty} \frac{1}{|k|^{2H}} \left(\tilde{f}_e(k) e^{-ikr} - (-)^H \tilde{f}_e(k) e^{ikr} \right) \\
with asymptotic solution } q_e(kr) \xrightarrow{r \to \infty} \frac{i}{\sqrt{k}} e^{ikr} \left(e^{-ikr} - e^{ikr} \right) \\
\text{They should equal up to a constant factor. } \\
\Rightarrow S_e(k) = e^{2i \delta_e} = 1 + 2ikf_e(k) = \frac{\tilde{f}_e(k)}{\tilde{f}_e(-k)} \\
\text{scattering matrix } \\
\text{Scattering amplitude (not Jost) } \\
f_e(k) = \frac{\sqrt{4\pi(2\ell+1)}}{k} \frac{e^{2i \delta_e} - 1}{2i \delta_e} = \frac{\sqrt{4\pi(2\ell+1)}}{k} \cot \delta_e - i \\
\text{if } k \text{ is real } \Rightarrow \frac{\tilde{f}_e(k)}{\tilde{f}_e(-k)} = \frac{\tilde{f}_e(k)}{\tilde{f}_e(-k)} = e^{2i \delta_e} \\
\Rightarrow |S_e(k)| = 1 \text{ is satisfied as required by the unitarity. } \\
\Rightarrow \tilde{f}_e(k) = |f_e(k)| e^{i \delta_e}, \text{ the phase of the Jost function. } \\
is just the phase shift. } \\
\text{4. In other word, } \tilde{f}_e(k) \text{ is the amplitude for the basis of the modified } \\
\text{propagating wave } \phi_e(k, r). \\
\text{}\tilde{f}_e(k) e^{i \ell k r} \quad \text{as } (r \to \infty)
Bound states.

$k^2 < 0$, but real $\Rightarrow k = \pm ix$, where $x > 0$. we have

$$u_k(ix, r) \overset{r \to +\infty}{\longrightarrow} \frac{1}{a} \left(\frac{i}{ix} \right)^{l+1} \tilde{f}_e(-ix) e^{xr}$$

$$- \frac{1}{a} \left(\frac{i}{ix} \right)^{l+1} (r^l \tilde{f}_e(ix)) e^{-xr}$$

we need $\tilde{f}_e(-ix) = 0$ for $x > 0$. \Rightarrow

$$u_k(ix, r) \overset{r \to +\infty}{\longrightarrow} \frac{1}{a} (-x)^{-l-1} \tilde{f}_e(ix) e^{-xr}$$

Similarly, we have $u_k(-ix, r) = u_k^*(ix, r)$

$$\overset{r \to +\infty}{\longrightarrow} \frac{1}{2} (-x)^{l-1} \tilde{f}_e^*(ix) e^{xr} = \frac{1}{a} (-x)^{l+1} \tilde{f}_e(ix) e^{xr}$$

according to $\tilde{f}_e(-ik^*) = \tilde{f}_e^*(k) \Rightarrow \tilde{f}_e^*(ix) = \tilde{f}_e(ix)$

\Rightarrow The zero of the Jost function on the negative imaginary axis corresponds to a bound state. We need $\tilde{f}_e(-ix) = 0$

$$\begin{cases} \tilde{f}_e(-ix) = 0 \\ \tilde{f}_e^*(ix) \neq 0 \end{cases}$$

According to, $\tilde{S}_e(k) = \frac{\tilde{f}_e^*(k)}{\tilde{f}_e(-k)} \Rightarrow $ $S(k)$ has a pole at

$k = ix$, and a zero at $k = -ix$.
Dispersion relation for the Jost function \(\tilde{f}_e(k) \)

It can be derived that on the real axis, and the lower half plane
\(\tilde{f}_e(k) \) is analytical, and as \(|k| \to \infty \),
\[
\tilde{f}_e(k) \xrightarrow{|k| \to \infty} 1 - i \frac{m}{k^2} \int_{0}^{\infty} V(r) \, dr \quad \text{for } \text{Im} \, k \leq 0
\]
assuming integral converges.

\[
\Rightarrow \tilde{f}_e(k) \xrightarrow{|k| \to \infty} - \frac{m}{k^2} \int_{0}^{\infty} V(r) \, dr.
\]
Thus \(\tilde{f}_e(k) - 1 \) is analytical and decay as \(\frac{1}{k} \) in the lower half plane. By Cauchy's theorem,
\[
\tilde{f}_e(k) - 1 = - \frac{1}{2\pi i} \oint \frac{\tilde{f}_e(k') - 1}{k' - k + i\epsilon} \, dk' \quad (\text{Im} \, k \leq 0)
\]
i.e.

Now let us set \(k \) at the real axis
\[
\oint_c = P \int_{-\infty}^{+\infty} + \text{semi-circle small} \\
+ \int \text{big semi-circle}
\]
\[
\tilde{f}_e(k) - 1 = \frac{i}{\pi} P \int_{-\infty}^{+\infty} \frac{\tilde{f}_e(k') - 1}{k' - k} \, dk' , \quad \text{where } P: \text{principle value}
\]
\[
\Rightarrow \quad \text{Re}[\tilde{f}(k') - 1] = -\frac{1}{\pi} P \int_{-\infty}^{+\infty} \frac{\text{Im}[\tilde{f}(k') - 1]}{k' - k} \, dk',
\]
\[
\text{Im}[\tilde{f}(k') - 1] = \frac{1}{\pi} P \int_{-\infty}^{+\infty} \frac{\text{Re}[\tilde{f}(k') - 1]}{k' - k} \, dk'.
\]

(You can also prove it by using \(\frac{1}{k' - k + i\eta} = P \frac{1}{k' - k} - i\pi \delta(k' - k) \)).

Another application: the dielectric function \(\varepsilon(\omega) \) is analytic in the upper half plane, we also have
\[
\varepsilon(\omega) - 1 = \frac{1}{i\pi} P \int_{-\infty}^{+\infty} \frac{\varepsilon(\omega') - 1}{\omega' - \omega} \, d\omega
\]
\[
\Rightarrow \quad \text{Re}[\varepsilon(\omega) - 1] = \frac{1}{\pi} P \int_{-\infty}^{+\infty} \frac{\text{Im}(\varepsilon(\omega') - 1)}{\omega' - \omega} \, d\omega
\]
\[
\text{Im}[\varepsilon(\omega) - 1] = -\frac{1}{\pi} P \int_{-\infty}^{+\infty} \frac{\text{Re}(\varepsilon(\omega') - 1)}{\omega' - \omega} \, d\omega
\]

\[
\varepsilon(\omega) - 1 = 4\pi i \frac{\sigma(\omega)}{\omega} = 4\pi \chi(\omega)
\]
\[
\text{real conductivity}
\]

\[
\Rightarrow \quad \text{Re} \sigma(\omega) = \omega \text{Im} \chi(\omega)
\]

If you measure the polarizability \(\text{Re} \chi(\omega) \), then through the \(K - K \) relation, you can obtain \(\text{Im} \chi(\omega) \), then you know the conductivity.

\[
\text{optical}
\]
We build up the connection between the number of bound states of a given l, and the phase shift $\delta_l(0)$ at the zero energy defined as $k \to 0$.

Let us assume $|\tilde{f}_l(0)| \neq 0$.

First, let us check the behavior of $\delta_l(k)$ as $k \to 0$. Due to

$$\tilde{f}_l(-k^*) = \tilde{f}_l^*(k)$$

and

$$\tilde{f}_l(k) = |\tilde{f}_l(k)| e^{i\delta_l(k)}$$

for k on real axis $\Rightarrow \tilde{f}_l(-k) = \tilde{f}_l^*(k) = |\tilde{f}_l(k)| e^{-i\delta_l(k)}$

this $\delta_l(-k) = -\delta_l(k)$ for $k \neq 0$, this means that $\delta_l(k)$ is discontinuous at $k = 0$.

Also $\delta_l(k) \to 0$ for high energy scattering. To maintain the analyticity of $\tilde{f}_l(0)$ at x-axis and lower half plane, we need

$$\delta_l(0^+) - \delta_l(0^-) = 2N\pi \Rightarrow \delta_l(0) = N\pi$$

if $\tilde{f}_l(0) \neq 0$.

Q: What's the value of N?

Now let us calculate the contour integral

$$-\frac{1}{2\pi i} \int_{c} \frac{\tilde{f}_l'(k)}{\tilde{f}_l(k)} dk = -\frac{1}{2\pi i} \int_{c} d\ln \tilde{f}_l(k)$$

The integrand has simple poles at zeros of $\tilde{f}_l(k)$, i.e. bound states
The LHS just gives the number of bound states N_e. The RHS
\[\ln \tilde{f}(k) = \ln |\tilde{f}(k)| + i \delta(k) \]

$\ln |\tilde{f}(k)|$ is continuous because $|\tilde{f}(k)|$ is nonzero along the contour.

\begin{itemize}
 \item Apparently, at the x-axis, $k = 0$, $\tilde{f}(k) \neq 0$, otherwise, $\tilde{U}(k,r) = 0$.
 \item Also, the bound state energy cannot go to $-\infty$, thus the zero of $\tilde{f}(k)$ cannot sit on the infinity semi-circle.
\end{itemize}

\[\Rightarrow \oint \ln |\tilde{f}(k)| = 0 \]

$\delta(k)$ is also continuous, but multiple-valued

\[\oint \delta(k) = \delta(0^-) - \delta(0^+) = -2\delta(0^+) \]

\[\Rightarrow -\frac{1}{2\pi i} \oint_c \frac{d \ln \tilde{f}(k)}{\tilde{f}(k)} = -\frac{i}{\pi i} \delta(0^+) = n_e \Rightarrow \delta(0^+) = n_e \pi. \]

It's clear that n_e is just the number of bound states.

* What happens if $\tilde{f}(0) = 0$? In this case, its phase $\delta(0)$ is ill-defined. We need to choose the contour with a semi-circle (small).

Again, we consider the integral
\[-\frac{1}{2\pi i} \oint_c \frac{\tilde{f}'(k)}{\tilde{f}(k)} dk = -\frac{1}{2\pi i} \int_c d \ln \tilde{f}(k). \]
LHS: If $l=0$, then $\tilde{f}_e(0) = 0$ does not represent a true bound state because the wavefunction leaks outside. Thus LHS really represents the number of bound states N_e. If $l \geq 1$, due to centrifugal potential $\frac{l(l+1)}{r^2}$, the zero-energy state really represents a bound state. It can be shown that the transmission probability to infinity is 0. The radial wavefunction $R_e(r) \sim r^{-(l+1)}$, and thus

$$\int_{R}^{+\infty} r^2 |\psi|^2 \, dr \sim \int_{R}^{+\infty} r^{-2l-2} \, dr = \int_{0}^{+\infty} \frac{dr}{r^{2l}}$$

which converges.

Thus although it's a power-law wave function, but is a bound state ($l=0$ does not work!). Thus at $l \geq 1$, $\text{LHS} = N_e - 1$.

If $\tilde{f}_e(0) = 0$, it can be shown (see Shiff textbook, cite Levinson), then $f_e(k) \propto k^q$ where $q = 1$ for $l = 0$,

$$1/2 \text{ for } l \neq 0.$$

then the right hand side

$$= \frac{1}{\pi} \delta(0^+) - \frac{q}{2} = \begin{cases} \frac{\delta(0^+)}{\pi} - \frac{1}{2} & \text{for } l = 0 \\
\frac{\delta(0^+)}{\pi} - 1 & \text{for } l \neq 0 \end{cases}$$

$$\delta_{l=0}(0^+) = \pi (n_0 + \frac{1}{2}) \text{ if } \tilde{f}_e(0) = 0 \text{ and } l = 0$$

otherwise $\delta_{l}(0^+) = \pi n_e$, Levinson's theorem!
§ Effective interaction range

Let us consider an explicit example of the Jost function

\[\tilde{f}_0(k) = \frac{k + i\alpha}{k - i\alpha} \]

which has the right asymptotic behavior

\[\tilde{f}_0(k) \rightarrow \frac{1}{k} \]

It has zero at \(k = -i\alpha \) corresponding to bound states with energy \(-\frac{\hbar^2 \alpha^2}{2m} \).

\[\tilde{f}_0(k) = \left(\frac{k^2 + \alpha^2}{k^2 - \alpha^2} \right)^{1/2} e^{i\delta_0(k)} \]

the phase shift \(\delta_0(k) = \tan^{-1} \frac{k}{\alpha} + \tan^{-1} \frac{\alpha}{k} \)

\[\Rightarrow \tan \delta_0(k) = \frac{k(k + \alpha)}{k^2 - \alpha^2} \]

\[k \cot \delta_0(k) = k \left(\frac{k^2 - \alpha^2}{k(k + \alpha)} \right) = -\frac{\alpha^2}{k + \alpha} + \frac{k^2}{k + \alpha} \]

For the low-energy scattering if we expand to second order of \(k^2 \)

\[k \cot \delta_0(k) = -\frac{1}{\alpha} + \frac{1}{2} \alpha \]

where \(\alpha \) is called interaction range.

\[\Rightarrow \alpha = \frac{2}{k + \alpha} \]

\(\alpha \) is usually small, so \(\alpha \) needs to be large.

\[\frac{1}{\alpha} = \frac{\alpha}{k + \alpha} = \frac{\alpha}{k} \left(1 - \frac{k}{k + \alpha} \right) \]

\[k \left(1 - \frac{k}{k + \alpha} \right) = k - \frac{\alpha}{2} k^2 \]

correct to the second order of \(k^2 \).
Consider the situation where \(\alpha \) is fixed, but \(x \) decreases to zero and becomes negative. At \(x = 0 \), \(f_0(0) = 0 \), there is a zero energy resonance and the scattering length a diverges. For \(x \) is negative, there is no true bound state, and the scattering length is negative.

For all the three cases, \(\phi(0, k) \) increases from zero as \(k \) decreases from \(-\infty\).

- **Zero energy resonance**
 \[x = 0, \quad \tan \delta_0(k) = \frac{k \alpha}{k^2} = \frac{\alpha}{k^2} \]

- **No-bound state**
 \[x < 0, \quad \tan \delta_0(k) = \frac{1}{k + |x|} \]

All agree with Levinson theorem.