Problem 1. (Sakurai 2nd edition 6.4)

Solution:

We quote the formulas in Sakurai's book for the logarithmic derivative and phase shift:

\[\beta_x = \left(\frac{\partial}{\partial k'} \frac{j_x(k')}{j_x(k')} \right) \bigg|_{k'=k} \]

\[\tan \delta_x = \frac{K R j_x'(KR) - \beta_x j_x(KR)}{K R j_x''(KR) - \beta_x j_x(KR)} \]

in which \(\frac{\partial}{\partial k'} k' = E - V_0 \), appearing in the logarithmic derivative at \(R = 0 \), while the expression for \(\tan \delta_x \) is a matching of connecting condition between \(R = 0 \) and \(R > 0 \).

Since we're considering low energy scattering (i.e. \(K R < 1 \)), only a small number of partial wave channels contribute. And we can only keep the results to lowest non-Vanishing order of \(K R \), which would be \((K R)^{2n+4} \) for \(l \)-th partial wave channel known as the so-called threshold behaviour.

The expansions for \(j_{l}(x) \) and \(n_{l}(x) \) around \(x=0 \) are:

\[j_{l}(x) = \frac{\pi}{2} \sum_{\alpha = 0}^{\infty} \frac{(-1)^\alpha}{n! \Gamma(n+3/2)} \left(\frac{x}{2} \right)^{2n+\alpha} \]

\[n_{l}(x) = \frac{\pi}{2} \sum_{\alpha = 0}^{\infty} \frac{(-1)^\alpha}{n! \Gamma(n+3/2)} \left(\frac{x}{2} \right)^{2n-\alpha-1} \]

These give:

\[j_{l}'(x) = \frac{x^l}{(2x+1)} - \frac{x^{l+2}}{2(2x+3)} + O(x^{l+4}) \]

\[n_{l}'(x) = \frac{x^{l+2}}{2(2x+1)} + O(x^{l+3}) \]

\[n_{l}(x) = \frac{1}{x^{l+3/2}} - \frac{1}{x^{l+5/2}} + O\left(\frac{1}{x^{l+3}} \right) \]

\[n_{l}'(x) = \frac{(l+1)(2x+1)}{2x+2} + O\left(\frac{1}{x^{l+2}} \right) \]

Denoting \(\chi' = k' R \), \(\chi = K R \), we have:

\[\beta_x = \chi' \frac{j_{l}'(\chi')}{j_{l}(\chi')} = \chi' \frac{x^{l+2}}{(2x+1)} + O(x^{l+4}) \]

Numerator for \(\tan \delta_x \) is:

\[\chi x_{l} j_{l}'(x) - \beta_x j_{l}(x) j_{l}'(x) = \frac{x^{l+2}}{(2x+1)} - \frac{(l+2)x^{l+3}}{2(2x+3)} - \frac{(l+1)x^{l+3}}{2(2x+4)} + O(x^{l+4}) \]

\[= \frac{x^{l+2}}{(2x+3)} \left(\frac{x}{x'} - 1 \right) + O(x^{l+4}) \]
Denominator is
\[\chi' n'(x) - \beta n(x) \chi n(x) = x \cdot \frac{(x+1)^2 x x+1}{x x+1} + A \cdot \frac{(x+1)^2 x x+1}{x x+1} + O\left(\frac{1}{x^2}\right) \]
\[= \frac{(x+1)^2 x x+1}{x x+1} + O\left(\frac{1}{x^2}\right) \]

Thus
\[\tan \theta = \frac{1}{(x+1)^2 x (x+3)^2} \chi (x+3) x x+3 \left(\frac{1}{x^2}\right) + O \text{ higher order terms} \]

Since
\[\frac{y^2}{x^2} - 1 = \frac{E-V_0}{E} = \frac{V_0}{E} = \frac{2mV_0 R^2}{\hbar^2 (kR)^2} \]

We have
\[\tan \theta = \frac{2mV_0 R^2}{\hbar^2} \frac{1}{(2n+1)(2n+3)^2} (kR)^{2n+1} + \text{higher order terms} \]

Thus
\[\theta = \tan \theta = \sin \theta = \frac{2mV_0 R^2}{\hbar^2} \frac{1}{(2n+1)(2n+3)^2} (kR)^{2n+1} \]

\[\delta_0 = 4\pi \frac{d\delta_0}{d\alpha} = 4\pi \frac{1}{\hbar^2} \frac{1}{\delta^2} \delta_0 = \frac{16\pi}{9} \frac{m^2 V_0^2 R^6}{\hbar^2} \]

So for small enough \(k \), the total cross section can be taken as that of S-Wave channel, and is
\[\frac{16\pi}{9} \frac{m^2 V_0^2 R^6}{\hbar^2} \]

If we keep the result up to p-wave, then
\[\mathcal{H}(\theta) = \frac{1}{k} \left(\delta_0 + 3 \delta_0 \cos \theta \right) \]

Then
\[\frac{d\delta}{d\theta} = \mathcal{H}(\theta) = \frac{1}{\delta_0} \left(1 + \frac{1}{5} (kR)^2 \cos \theta \right) \]

\[= \frac{1}{\delta_0} \left(1 + \frac{2}{5} (kR^2) \cos \theta \right) \]

Hence
\[B/A = \frac{2}{5} (kR)^2 \]

Solution:

(a) In a spherically symmetric scattering potential, the partial wave expansion for the scattering amplitude \(f(\theta) \) is

\[
\begin{align*}
f(\theta) &= \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) \frac{\hat{t}^l}{k^l} P_l(\cos \theta) \\
&= \sum_{l=0}^{\infty} (2l+1) \frac{\hat{t}^l}{k^l} P_l(\cos \theta), \text{ for small enough } \delta_k.
\end{align*}
\]

Use the orthogonality relation for Legendre polynomials

\[
\int_{-1}^{1} dx \ P_l(x) P_{l'}(x) = \frac{2}{2l+1} \delta_{ll'}.
\]

We get

\[
(2l+1) \frac{\hat{t}^l}{k^l} \cdot \frac{2}{2l+1} \approx \int_{0}^{\pi} \sin \theta d\theta f(\theta) P_l(\cos \theta)
\]

\[
= \int_{-1}^{1} dx \ P_l(x) \cdot (-1) \frac{2mV_0}{\hbar^2 \mu} \frac{1}{1 + \frac{\mu^2}{2\hbar^2} - x}
\]

\[
= -2mV_0 \frac{1}{\hbar^2 \mu} \int_{-1}^{1} dx \ \frac{P_l(x)}{1 + \frac{\mu^2}{2\hbar^2} - x}
\]

\[
= -2mV_0 \frac{1}{\hbar^2 \mu} Q_{\ell} \left(1 + \frac{\mu^2}{2\hbar^2} \right)
\]

\[
\Rightarrow \delta_{\ell} = -\frac{mV_0}{\hbar^2 \mu} Q_{\ell} \left(1 + \frac{\mu^2}{2\hbar^2} \right)
\]

(b) (ii) Obviously \(1 + \frac{\mu^2}{2\hbar^2} > 1 \), and so the expansion of \(Q_{\ell}(x) \) applies, particularly \(Q_{\ell}(\frac{\mu}{\hbar}) > 0. \) So \(\delta_{\ell} > 0, \) \(V_0 < 0 \) and \(\delta_{\ell} < 0 \) if \(V_0 > 0. \)

(ii) When \(\frac{\mu}{\hbar} \gg \frac{\mu}{\hbar}, \) i.e., \(\frac{\mu}{\hbar} \gg 1, \) we have

\[
Q_{\ell} \left(1 + \frac{\mu^2}{2\hbar^2} \right) \approx Q_{\ell} \left(\frac{\mu}{\hbar} \right)
\]

\[
= \frac{1}{(2\ell+1)!!} \frac{1}{\left(-\frac{\mu^2}{2\hbar^2} \right)^{\ell+1}}
\]

\[
= \frac{2^{\ell+1} \ell!}{(2\ell+1)!!} \frac{m^2}{\hbar^2 \mu^{2\ell+2}} \kappa^{2\ell+2}
\]

\[
\Rightarrow \delta_{\ell} = -\frac{2^{\ell+1} \ell!}{(2\ell+1)!!} \frac{mV_0}{\kappa^{2\ell+2} \mu^{2\ell+2}} \kappa^{2\ell+2}
\]

Solution:

(a) Radial equation for s-wave is
\[\frac{d^2 U}{dr^2} + \left(k^2 - \frac{2m}{\hbar^2} V(r) \right) U = 0. \]

In this problem, we have
\[\frac{d^2 U}{dr^2} + \left(k^2 - \frac{1}{r^2} \right) U = 0. \]

For \(r < R \), we have \(\frac{d^2 U}{dr^2} + k^2 U = 0. \)

Imposing the boundary condition \(U|_{r=R^0} = 0 \), one has
\[U(r) = A \sin kr. \]

For \(r > R \), we have \(U(r) = B \sin (kr + \delta_0) \).

From the differential equation, we have
\[\int_{R^-}^{R^+} \frac{d^2 U}{dr^2} dr = \int_{R^-}^{R^+} \left(\frac{1}{r^2} \right) U(r) dr \]
\[= \gamma U(R) \]

Thus the connecting conditions at \(r = R \) are
\[\begin{cases} U(r = R^-) = U(r = R^+) \\ \left. \frac{dU}{dr} \right|_{R^-} - \left. \frac{dU}{dr} \right|_{R^+} = \gamma U(R) \end{cases} \]
\[\Rightarrow \left. \frac{U}{U} \right|_{R^+} - \left. \frac{U}{U} \right|_{R^-} = \gamma. \]

For \(r < R \), \(\left. \frac{U}{U} \right|_{R^+} = k \cot kr \); for \(r > R \), \(\left. \frac{U}{U} \right|_{R^-} = k \cot (kr + \delta_0) \).

Hence
\[k \cot (kr + \delta_0) - k \cot kr = \gamma \]
\[\Rightarrow \tan \delta_0 = \frac{k + \cot kr}{k + \tan kr + \cot kr} = -\frac{\frac{k}{k} \sin^2 kr}{1 + \frac{k}{k} \sin kr \cos kr} \]

So the equation for phase shift is
\[\tan \delta_0 = -\frac{\frac{k}{k} \sin^2 kr}{1 + \frac{k}{k} \sin kr \cos kr} \]

(b) 1) (If \(\tan kr \) is not close to zero, one gets hard sphere scattering.)

Using \(\gamma \gg k \), i.e. \(\frac{k}{k} \gg 1 \), we get
\[\tan \delta_0 \approx \frac{\frac{k}{k} \sin^2 kr}{1 + \frac{k}{k} \sin kr \cos kr} \]

which is just the hard sphere result.

2) (Resonance)

Resonance occurs when cross section for the partial wave channel reaches its maximal value
while at the same time \(\cot \theta = -\frac{1}{\frac{2k}{\sin kr}} \), goes through zero from positive side as \(k \) increases.

\[
\cot \theta = \frac{1 + \frac{k}{\sin kr} \cos \theta}{\frac{k}{\sin kr}} = \frac{1 + \frac{k}{\sin kr}}{\frac{k}{\sin kr} \cos \theta} = \frac{\frac{k}{\sin kr}}{\frac{k}{\sin kr} \cos \theta} = -\frac{1}{2} \frac{\sin 2kr + \frac{2k}{\sin kr}}{\sin 2kr \sin \theta} = -\frac{1}{2} \frac{\sin 2kr - (-\frac{2k}{\sin kr})}{\sin 2kr \sin \theta}
\]

Let \(\cot \theta = 0 \), we have \(\sin 2kr = -\frac{2k}{\sin kr} \to 0 \), \(r \to \infty \). So for large \(r \), \(\sin 2kr \) is very close to \(0 \). If we require \(\cot \theta \) to pass through zero from a positive side then \(\sin 2kr - (-\frac{2k}{\sin kr}) \) has to pass through negative side.

![Graph of \(\sin 2kr \) vs \(kr \)]

The slope \(-\frac{2k}{\sin kr} \ll 2k \) since \(r \gg \frac{1}{Y} \). From graph we see that \(B \) is true solution while \(A \) is not, so \(2kr = 2n\pi + \chi \), where \(\chi \) is small.

Then \(2kr = \frac{2k}{1/2} \), or \(kr = n\pi - \frac{k}{Y} \).

Hence \(\sin (2kr) = \sin x = -\frac{2k}{Y} \Rightarrow x = \frac{2k}{Y} \).

3. (Determine position of resonance to order \(\frac{1}{Y} \); compare result with spherical well)

Resonance position has been determined in 3 as \(kr = n\pi - \frac{k}{Y} \),
or \(kr = \frac{n\pi}{1 + \frac{k}{Y}} \Rightarrow n\pi (1 - \frac{1}{Y}) \).

For the quantum well, let \(\sin kr = n\pi \), we get \(kr = n\pi \).

One can see that positions of resonance is quite close to bound states in a quantum well in the limit of large \(r \).

4. (Obtain an expression for resonance width)

\[
\frac{d\theta}{dE} = \frac{d}{dE} \left(\frac{1 + \frac{k}{\sin kr} \cos \theta}{\frac{k}{\sin kr}} \right)
\]

\[
= -\frac{1}{k \sqrt{Y}} \frac{d}{dE} \left(\frac{1 + \frac{k}{\sin kr} \cos \theta}{\frac{k}{\sin kr}} \right)
\]

\[
= -\frac{m}{k \sqrt{Y}} \frac{d}{dE} \left(\frac{k + \frac{k}{\sin kr} \cos \theta}{\frac{k}{\sin kr}} \right)
\]

\[
= -\frac{m}{k \sqrt{Y}} \frac{1}{\sin kr} \left[Y \sin kr (1 + \frac{Yr}{\sin kr} \cos \theta - \sin kr) \right] - \frac{m}{k \sqrt{Yr}} \left(k + \frac{k}{\sin kr} \cos \theta - \sin kr \right)
\]
\[- \frac{m}{h^2 k} \cdot \frac{1}{Y \sin kR} \left[\sin kR \left(1 + \frac{Y R (\cos kR - \sin kR)}{\sin kR} \right) \right] - 2k \cos kR \left(k + Y \sin kR \cos kR \right) \]

At \(E = E_r \), i.e. \(k = k_r = \frac{m a}{RY} \), we can replace \(\sin kR \) with \(\frac{\pi R k}{Y} \), \(\cos kR \) with \((-1)^n \).

Then

\[
\frac{d \psi}{dE} \bigg|_{E = E_r} = \frac{m}{\hbar^2 k} \cdot \frac{1}{Y} \left(\frac{\pi R k}{Y} \right)^3 \cdot (-1)^n \cdot 2kR \cdot (-1)^n.
\]

\[
\Rightarrow \quad \Gamma = \frac{\hbar^2 Y (\pi a)^3}{m R} = \frac{\hbar^2 \pi^3}{m R^2 Y^2} \propto \frac{1}{Y^2}
\]

So \(\Gamma \) decreases as \(Y \) increases.