Solution to HW 3

January 10, 2011

Problem 1 (Griffiths 5.24)

If \(B \) is uniform, show that \(A(r) = -\frac{1}{2}(r \times B) \) works. That is, check that \(\nabla \cdot A = 0 \) and \(\nabla \times A = B \). Is this result unique, or are there other functions with the same divergence and curl?

Solution: Since \(B \) is uniform, \(\nabla \times B = 0 \), \((r \cdot \nabla) B = 0\). And \(\nabla \times r = 0 \), \(\nabla \cdot r = 3 \), we have

\[
\nabla \cdot A = -\frac{1}{2} \nabla \cdot (r \times B) = -\frac{1}{2} (B \cdot (\nabla \times r) - r \cdot (\nabla \times B)) = 0
\]

\[
\nabla \times A = -\frac{1}{2} \nabla \times (r \times B) = -\frac{1}{2} (r (\nabla \cdot B) + (B \cdot \nabla) r - B (\nabla \cdot r) - (r \cdot \nabla) B)
\]

\[
= -\frac{1}{2} (0 + B - 3B - 0) = B.
\]

Take \(A' = A + \nabla \varphi \),

\[
\nabla \cdot A' = \nabla \cdot A + \nabla^2 \varphi,
\]

\[
\nabla \times A' = \nabla \times A.
\]

So we need \(\varphi \) to be linear in \(x, y \) and \(z \) so that \(\nabla^2 \varphi = (\partial_x^2 + \partial_y^2 + \partial_z^2) \varphi = 0 \). For example, take \(\varphi = xy \), \(\nabla \varphi = ye_x + xe_y \), \(\nabla^2 \varphi = 0 \).

Problem 2 (Griffiths 5.29)

Use the results of Ex. 5.11 to find the field inside a uniformly charged sphere of total charge \(Q \) and radius \(R \), which is rotating at a constant angular velocity \(\omega \).

Solution: In Ex. 5.11, we found the vector potential inside a uniformed charged shell with radius \(R' \) as Eq. 5.67,

\[
A(r, \theta, \phi) = \begin{cases}
\mu_0 \frac{R' \omega}{r} \sin \theta \hat{\phi}, & (r \leq R) \\
\mu_0 \frac{R' \omega}{r} \frac{1}{r^2} \sin \theta \hat{\phi}, & (r \geq R)
\end{cases}
\]

Here, a uniformly charged sphere can be thought as layers of spheres, larger one containing smaller ones inside. The field inside a uniformly charged sphere can be found by integration over \(R' \),

\[
A(r, \theta, \phi) = \frac{\mu_0 \omega}{3} r \sin \theta \hat{\phi} \int_r^R R'dR' + \frac{\mu_0 \omega}{3} \frac{1}{r^2} \sin \theta \hat{\phi} \int_0^R R'^4 dR'
\]

\[
= \frac{\mu_0 \omega}{3} r \sin \theta \hat{\phi} \left(\frac{1}{2} R^2 - \frac{1}{2} r^2 \right) + \frac{\mu_0 \omega}{3} \frac{1}{r^2} \sin \theta \hat{\phi} \left(\frac{1}{5} R^5 - \frac{1}{5} r^5 \right)
\]

In 3D spherical coordinates, the metric is

\[
\eta = \begin{pmatrix} h_r & 0 & 0 \\
0 & h_\theta & 0 \\
0 & 0 & h_\phi \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\
0 & r & 0 \\
0 & 0 & r \sin \theta \end{pmatrix}
\]
\[\mathbf{B}(r, \theta, \varphi) = \nabla \times \mathbf{A}(r, \theta, \varphi) \]

\[= \frac{1}{h_\varphi} \left[\frac{\partial}{\partial \theta} (A_\varphi h_\varphi) - \frac{\partial}{\partial \varphi} (A_\theta h_\varphi) \right] \hat{f} + \frac{1}{h_\varphi h_r} \left[\frac{\partial}{\partial \varphi} (A_\varphi h_r) - \frac{\partial}{\partial r} (A_\varphi h_\varphi) \right] \hat{\theta} + \frac{1}{h_r h_\theta} \left[\frac{\partial}{\partial \theta} (A_r h_\theta) - \frac{\partial}{\partial r} (A_\theta h_\theta) \right] \hat{\phi} \]

\[= \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial \theta} (A_r r \sin \theta) \right] \hat{r} + \frac{1}{r \sin \theta} \left[- \frac{\partial}{\partial r} (A_r r \sin \theta) \right] \hat{\theta} \]

\[= \frac{\mu_0 \omega}{2} \frac{Q}{3 \pi R^3} \left[\frac{\sin \theta}{\sin \theta} \left(\frac{1}{3} R^2 - \frac{r^2}{5} \right) \right] \hat{r} - \frac{1}{r \sin \theta} \frac{\partial}{\partial r} \left(\frac{1}{3} R^2 r^2 - \frac{r^4}{5} \right) \hat{\theta} \]

\[= \frac{\mu_0 Q}{4\pi R} \left[\cos \theta \left(1 - \frac{3}{5} \frac{r^2}{R^2} \right) \hat{r} - \sin \theta \left(1 - \frac{6 r^2}{5 R^2} \right) \hat{\theta} \right]. \]

Problem 3 (Griffiths 5.30)

(a) Complete the proof of Theorem 2, Sect. 1.6.2. That is, show that any divergenceless vector field \(\mathbf{F} \) can be written as the curl of a vector potential \(\mathbf{A} \). What you have to do is find \(A_x, A_y \) and \(A_z \) such that: (i) \(\partial A_x / \partial y - \partial A_y / \partial z = F_z \); (ii) \(\partial A_x / \partial z - \partial A_z / \partial x = F_y \); and (iii) \(\partial A_y / \partial x - \partial A_x / \partial y = F_x \). Here’s one way to do it: Pick \(A_x = 0 \), and solve (ii) and (iii) for \(A_y \) and \(A_z \). Note that the “constants of integration” here are themselves functions of \(y \) and \(z \)—they’re constant only with respect to \(x \). Now plug these expressions into (i), and use the fact that \(\nabla \cdot \mathbf{F} = 0 \) to obtain

\[A_y = \int_0^x F_z(x', y, z) \, dx'; A_z = \int_0^y F_x(0, y', z) \, dy' - \int_0^z F_y(x', y, z) \, dx'. \]

Solution: Pick \(A_x = 0 \),

\[-\partial A_z / \partial x = F_y \Rightarrow A_z = -\int_0^x F_y(x', y, z) \, dx' + C_1(y, z), \]

\[\partial A_y / \partial x = F_z, \Rightarrow A_y = \int_0^x F_z(x', y, z) \, dx' + C_2(y, z). \]

Now plug these expressions into (i),

\[\frac{\partial}{\partial y} \left[-\int_0^x F_y(x', y, z) \, dx' + C_1(y, z) \right] - \frac{\partial}{\partial z} \left[\int_0^x F_z(x', y, z) \, dx' + C_2(y, z) \right] = F_x, \]

\[-\int_0^x \left(\frac{\partial}{\partial y} F_y(x', y, z) + \frac{\partial}{\partial z} F_z(x', y, z) \right) \, dx' + \frac{\partial}{\partial y} C_1(y, z) - \frac{\partial}{\partial z} C_2(y, z) = F_x, \]

and use the fact that \(\nabla \cdot \mathbf{F} = 0 \) to get

\[\int_0^x \frac{\partial}{\partial x} F_x(x', y, z) \, dx' + \frac{\partial}{\partial y} C_1(y, z) - \frac{\partial}{\partial z} C_2(y, z) = F_x, \]

\[\Rightarrow \frac{\partial}{\partial y} C_1(y, z) - \frac{\partial}{\partial z} C_2(y, z) = F_x(0, y, z). \]

Take \(C_2(y, z) = 0 \),

\[A_y = \int_0^x F_z(x', y, z) \, dx', \]

\[C_1(y, z) = \int_0^y F_x(0, y', z) \, dy', \]

\[A_z = -\int_0^x F_y(x', y, z) \, dx' + C_1(y, z) \]

\[= -\int_0^x F_y(x', y, z) \, dx' + \int_0^y F_x(0, y', z) \, dy'. \]
Prob. 5.51. (b) By direct differentiation, check that the A you obtained in part (a) satisfies $\nabla \times A = F$. Is A divergenceless? This was a very asymmetrical construction, and it would be surprising if it were—although we know that there exists a vector whose curl is F and whose divergence is zero.

Solution:

\[
\nabla \times A = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & f_0^x F_z(x', y, z) \, dx' - f_0^y F_y(x', y, z) \, dx' + f_0^y F_x(0, y', z) \, dy' \\
\end{vmatrix}
\]

\[
= i \left(- \int_{0}^{x} \frac{\partial}{\partial y} F_y(x', y, z) \, dx' + \frac{\partial}{\partial y} \int_{0}^{y} F_z(0, y', z) \, dy' - \int_{0}^{x} \frac{\partial}{\partial z} F_z(x', y, z) \, dx' \right)
\]

\[
- j \frac{\partial}{\partial x} \left(- \int_{0}^{x} F_y(x', y, z) \, dx' + \int_{0}^{y} F_x(0, y', z) \, dy' \right) + k \frac{\partial}{\partial x} \int_{0}^{x} F_z(x', y, z) \, dx'
\]

\[
= i \left(- \int_{0}^{x} \frac{\partial}{\partial y} F_y(x', y, z) + \frac{\partial}{\partial z} F_z(x', y, z) \right) \, dx' + F_x(0, y, z)
\]

\[
+ j \frac{\partial}{\partial x} \int_{0}^{x} F_y(x', y, z) \, dx' + k \frac{\partial}{\partial x} \int_{0}^{x} F_z(x', y, z) \, dx'
\]

\[
= i \left(\int_{0}^{x} \frac{\partial}{\partial y} F_y(x', y, z) \, dx' + F_x(0, y, z) \right) + \frac{\partial}{\partial x} \left(\int_{0}^{x} F_y(x', y, z) \, dx' \right) + k \frac{\partial}{\partial x} \int_{0}^{x} F_z(x', y, z) \, dx'
\]

\[
= i F_x(x, y, z) + j F_y(x, y, z) + k F_z(x, y, z) = F
\]

\[
\nabla \cdot A = \int_{0}^{x} \frac{\partial}{\partial y} F_y(x', y, z) \, dx' - \int_{0}^{x} \frac{\partial}{\partial z} F_z(x', y, z) \, dx' + \int_{0}^{y} \frac{\partial}{\partial y} F_y(0, y', z) \, dy'
\]

\[
\ne 0,
\]

in general.

(c) As an example, let $F = y \hat{x} + z \hat{y} + x \hat{z}$. Calculate A, and confirm that $\nabla \times A = F$. (For further discussion see Prob. 5.51.)

Solution: Let $F = y \hat{x} + z \hat{y} + x \hat{z}$.

\[
A_y = \int_{0}^{x} F_z(x', y, z) \, dx' = \int_{0}^{x} x' \, dx' = \frac{1}{2} x^2,
\]

\[
A_z = - \int_{0}^{x} z \, dx' + \int_{0}^{y} y' \, dy' = -xz + \frac{1}{2} y^2.
\]

\[
A = \left(\frac{1}{2} x^2 \hat{y} + \frac{1}{2} y^2 - xz \right) \hat{z},
\]

\[
\nabla \times A = \left(\frac{\partial}{\partial y} A_z - \frac{\partial}{\partial z} A_y \right) \hat{x} + \left(- \frac{\partial}{\partial x} A_z \right) \hat{y} + \left(\frac{\partial}{\partial x} A_y \right) \hat{z}
\]

\[
= y \hat{x} + z \hat{y} + x \hat{z}.
\]

Problem 4 (Griffiths 5.36)

Find the magnetic dipole moment of the spinning spherical shell in Ex. 5.11. Show that for points $r > R$ the potential is that of a perfect dipole.

Solution:

\[
m = \int dm = \int I dA = \int \frac{dq}{dt} dA = \hat{z} \int_{0}^{\pi} \sigma \left(\frac{2\pi R \sin \theta}{R} \right) R \sin \theta \, d\theta = \pi \sigma R^4 \omega \hat{z}.
\]
For points $r > R$ the potential is

$$A(r, \theta, \varphi)|_{r>R} = \mu_0 R^4 \omega \sigma \frac{1}{3} \frac{1}{r^2} \sin \theta \hat{\phi}. $$

$$A_{dp} = \mu_0 \frac{m \times \hat{r}}{4\pi \frac{r^2}{r^2}} = \mu_0 \frac{4\pi \sigma R^4 \omega}{4\pi \frac{3}{3}} \hat{z} \times \hat{r} = \mu_0 R^2 \omega \sigma \frac{1}{3} \frac{1}{r^2} \sin \theta \hat{\phi} = A(r, \theta, \varphi)|_{r>R}. $$