Unconventional magnetism and spontaneous spin-orbit ordering

Congjun Wu (Univ. California, San Diego)

Ref. 1) C. Wu and S. C. Zhang, PRL 93, 36403 (2004);
2) C. Wu, K. Sun, E. Fradkin, and S. C. Zhang, PRB.75, 115103 (2007).
3) Y. Li, C. Wu, PRB 85, 205126 (2012).

Jan 18, 2017, UCSD

Collaborators

- S. C. Zhang, Stanford.
- E. Fradkin, UIUC.
- D. Arovas, UCSD
- K. Sun, UIUC (now at U. Michigan)
- W. C. Lee, UCSD (now at Binghamton, SUNY)
- Y. Li, UCSD (now at Johns Hopkins)
- C Xu and S. L. Xu, UCSD

Thanks to J. Hirsch, M. Beasley, A. L. Fetter, S. Kivelson, J. Zaanen, S. Das Sarma, A. J. Leggett, L. Balents for stimulating discussions.

Itinerant FM: Quantum origin!

E.C. Stoner

- Q: How does spin-independent interaction induce spin polarization?
- Electrons with parallel spins avoid each other to reduce repulsion.

 $E_{\uparrow\uparrow} < E_{\uparrow\downarrow}$

• Stoner criterion:

$$UN_{0} > 1$$

U: interaction strength

Itinerant ferromagnetism: s-wave

• Spin rotational symmetry is broken.

• Orbital rotational symmetry is **NOT** broken: spin polarizes along **a fixed direction**.

• cf. Conventional superconductivity.

s-wave: gap function invariant over the Fermi surface.

cf. Unconventional superconductivity

- High partial wave pairing symmetries (e.g. *p*, *d*-wave ...).
- *d*-wave: high T_c cuprates.

• *p*-wave: Sr₂RuO₄, ³He-A and B.

D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995); C. C. Tsuei et al., Rev. Mod. Phys. 72, 969 (2000).

New states of matter: unconventional magnetism!

- High partial wave channel magnetism (e.g. *p*, *d-wave*...) .
- Multi-polar spin distribution over the Fermi surface.

anisotropic *p*-wave state

spin-split state by J. E. Hirsch, PRB 41, 6820 (1990); PRB 41, 6828 (1990).

spin flips the sign as $\vec{k} \rightarrow -\vec{k}$

Introduction: electron spin liquid-crystal

Anisotropy: liquid crystalline order

• Classic liquid crystal.

Nematic phase: rotational anisotropic but translational invariant.

• Quantum version of liquid crystal: **nematic electron liquid**.

S. Kivelson, et al, Nature 393, 550 (1998); V. Oganesyan, et al., PRB 64,195109 (2001). 9

Nematic electron liquid in 2D GaAs/AlGaAs at high B fields

M. M. Fogler, et al, PRL 76 ,499 (1996), PRB 54, 1853 (1996); E. Fradkin et al, PRB 59, 8065 (1999), PRL 84, 1982 (2000).

Nematic electron liquid in Sr₃Ru₂O₇ at high B fields

- Quasi-2D system; resistivity **anisotropy** at 7~8 Tesla.
- Fermi surface nematic distortions.

S. A. Grigera et al., Science 306 1154, (2004). R. A. Borzi et al.. Science express (2006). 11

<u>Anisotropic unconventional magnetism:</u> <u>spin liquid-crystal phases!</u>

- *p*-wave distortion of the Fermi surface.
- Spin dipole moment in momentum space (not in coordinate space).

$$\vec{n}_1 = \sum_{\vec{k}} \vec{s}_k \cos \theta_k \neq 0$$

anisotropic *p*-wave magnetic phase

spin-split state by J. E. Hirsch, PRB 41, 6820 (1990); PRB 41, 6828 (1990). • Both orbital and spin rotational symmetries are broken.

V. Oganesyan, et al., PRB 64,195109 (2001). C. Wu et al., PRL 93, 36403 (2004); Varma et al., Phys. Rev. Lett. 96, 036405 (2006)

Introduction: dynamic generation of spin-orbit coupling

Unconventional magnetism: dynamic generation of spin-orbit (SO) coupling!

• Conventional wisdom:

A **single-body** effect from the Dirac equation

• New mechanism (many-body collective effect):

Generate SO coupling through **unconventional magnetic phase transitions.**

• Advantages: tunable SO coupling by varying temperatures; new types of SO coupling.

The isotropic *p*-wave magnetic phase

C. Wu et al., PRL 93, 36403 (2004); C. Wu et al., PRB PRB.75, 115103 (2007). . • Helicity $\vec{\sigma} \cdot \vec{k}$ is a good quantum number.

• No net spin-moment; spin dipole moment in momentum space.

$$\vec{n}_1 = \sum_{\vec{k}} \vec{s}_k \cos \theta_k, \quad \vec{n}_2 = \sum_{\vec{k}} \vec{s}_k \sin \theta_k$$

• Isotropic phase with SO coupling.

$$H_{MF} = H_0 + \overline{n} \sum_{k} \psi_{\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \cdot \vec{k} \psi_{\beta}$$
$$\overline{n} = |\vec{n}_1| = |\vec{n}_2|$$

The subtle symmetry breaking pattern

• \vec{J} is conserved , but \vec{L} , \vec{S} are not separately conserved.

• **Independent** orbital and spin rotational symmetries.

 $\vec{J}=\vec{L}+\vec{S}$

Leggett, Rev. Mod. Phys **47**, 331 (1975)

• Relative spin-orbit symmetry breaking.

Summary of the introduction

Outline

• Introduction.

Mechanism for unconventional magnetic phase transitions.

- Fermi surface instability of the Pomeranchuk type.
- Mean field phase structures.
- Collective modes and neutron spectroscopy.
- Spin-orbit coupled Fermi liquid theory magnetic dipolar.

 Possible directions of experimental realization and detection methods.

Landau Fermi liquid (FL) theory

L. Landau

- The existence of Fermi surface.
- Electrons close to Fermi surface are important.
- Interaction functions:

 $f_{\alpha\beta,\gamma\delta}(\hat{p}_{1},\hat{p}_{2}) = f^{s}(\hat{p}_{1},\hat{p}_{2}) \qquad \text{density} \\ + f^{a}(\hat{p}_{1},\hat{p}_{2})\vec{\sigma}_{\alpha\beta}\cdot\vec{\sigma}_{\gamma\delta} \qquad \text{spin}$

• Landau parameter in the *i*th partial wave channel:

$$F_l^{s,a} = N_0 f_l^{s,a} \quad N_0 : \text{DOS}$$

Pomeranchuk instability

- Fermi surface: elastic membrane.
- Stability: $\Delta E_{\kappa} \propto (\delta n_{\iota}^{s,a})^2$

$$\Delta E_{\rm int} \propto \frac{F_l^{s,a}}{2l+1} (\delta n_l^{s,a})^2$$

• Surface tension vanishes at:

I. Pomeranchuk

$$F_l^{s,a} < -(2l+1)$$

- Ferromagnetism: the F_0^a channel.
- Nematic electron liquid: the F_2^s channel.

Unconventional magnetism: Pomeranchuk instability in the spin channel

 An analogy to superfluid ³He-B (isotropic) and A (anisotropic) phases.

cf. Superfluid ³He-B, A phases

• ³He-B (isotropic) phase.

• ³He-A (anisotropic) phase.

A. J. Leggett, Rev. Mod. Phys 47, 331 (1975)

The order parameters: the 2D p-wave channel

• F_1^a : Spin currents flowing along x and y-directions, or spin-dipole moments in momentum space.

- *cf*. Ferromagnetic order (s-wave): $\vec{s} = \sum_{\vec{k}} \psi_k^+ \vec{\sigma} \psi_k$
- Arbitrary partial wave channels: spin-multipole moments.

$$F_l^a: \cos\theta_k \to \cos l\theta_k; \sin\theta_k \to \sin l\theta_k$$

Mean field theory and Ginzburg-Landau free energy

• The simplest non-*s*-wave exchange interaction:

$$F_1^a \quad H_{\text{int}} = \sum_q f_1^a(\vec{q}) \{ \vec{n}_1(\vec{q}) \cdot \vec{n}_1(\vec{q}) + \vec{n}_2(\vec{q}) \cdot \vec{n}_2(\vec{q}) \}$$

$$H_{MF} = \sum_{k} \psi^{+}(k) [\varepsilon(k) - \mu - (\vec{n}_{1} \cos \theta_{k} + \vec{n}_{2} \sin \theta_{k}) \cdot \vec{\sigma}] \psi(k)$$

• Symmetry constraints: rotation (spin, orbital), parity, time-reversal.

$$F(\vec{n}_1, \vec{n}_2) - F(0) = r(|\vec{n}_1|^2 + |\vec{n}_2|^2) + v_1(|\vec{n}_1|^2 + |\vec{n}_2|^2)^2 + v_2 |\vec{n}_1 \times \vec{n}_2|^2$$

instability!

$$r = \frac{N_0}{2} \frac{1 + F_1^a / 2}{|F_1^a|} \qquad F_1^a < -2$$

 β and α -phases (*p*-wave)

 $v_2 < 0: \beta$ – phase $\vec{n}_1 \perp \vec{n}_2$ and $|\vec{n}_1| = |\vec{n}_2|$

 $v_2 > 0: \alpha - \text{phase}$ $\vec{n}_1 // \vec{n}_2; |\vec{n}_2| / |\vec{n}_1| \text{ arbitary}$

<u>The β -phases: vortices in momentum space</u>

• Perform global spin rotations, $A \rightarrow B \rightarrow C$.

L. Fu's(PRL2015): gyro

ferroelectric

muti-polar

<u>2D</u> *d*-wave α and β -phases

<u>The α -phases: orbital & spin channel Goldstone (GS) modes</u>

• Orbital channel GS mode: FS oscillations (intra-band transition).

$$L_{FS}^{\alpha}(\vec{q},\omega) = N_0 \{ \frac{(q\xi)^2}{|F_l^{\alpha}|} - i \frac{\omega}{2v_f q} (1 + \cos 2\phi_q) \}$$

Anisotropic overdamping: The mode is maximally overdamped for q along the x-axis, and underdamped along the y-axis (\neq 1).

• Spin channel GS mode: "spin dipole" precession (spin flip transition).

$$\omega_{x\pm iy}^2 = \frac{\overline{n}^2}{|F_l^a|} (q\xi)^2$$

Nearly isotropic, underdamped and linear dispersions at small q.

<u>The α -phases: neutron spectra</u>

• No *elastic* Bragg peaks.

• $\vec{n}_{1,2}$ can couple with spin dynamically **at** $T < T_c$ -- coupling between GS modes and spin-waves (spin-flip channel).

$$L = (\vec{n}_1 \times \partial_t \, \vec{n}_1 + \vec{n}_2 \times \partial_t \vec{n}_2) \cdot \vec{S} \rightarrow \bar{n} \, (S_y \partial_t n_{1x} - S_x \partial_t n_{1y})$$

• *In-elastic*: **resonance peaks** develop **at T<T**_c.

<u>The β -phases: GS modes</u>

Z.

• 3 branches of relative spin-orbit modes.

$$O_{z} = \frac{1}{\sqrt{2}} (n_{2}^{x} - n_{1}^{y});$$
$$O_{x} = -n_{2}^{z}; O_{y} = n_{1}^{z};$$

• For $l \ge 2$, these modes are with linear dispersion relations, and underdamped at small q.

• Inelastic neutron spectra: GS modes also couple to spin-waves, and induce resonance peaks in both spin-flip and non-flip channels.

Outline

- Introduction.
- Mechanism for unconventional magnetic phase transitions.
 - Fermi surface instability of the Pomeranchuk type.
 - Mean field phase structures.
 - Collective modes and neutron spectroscopy.

• Spin-orbit coupled Fermi liquid theory – magnetic dipolar interaction.

 Possible directions of experimental realization and detection methods.

Magnetic dipoles: from classic to quantum

• Ferro-fluid: iron powders in oil.

• In solids, magnetic dipolar interaction \ll Coulomb interaction.

$$r_{s} = \frac{d}{a_{B}} \qquad E_{m} = \frac{\mu_{B}^{2}}{d^{3}} = \frac{\lambda_{cmp}^{2}}{a_{B}^{2}} \frac{Ry}{r_{s}^{3}} = \frac{\alpha^{2}}{r_{s}^{2}} E_{el} \approx \frac{1.4}{r_{s}^{3}} meV$$

Magnetic dipolar Fermi gases

• Itinerant magnetic dipolar system: (^{161}Dy , ^{163}Dy) $10\mu_B$

$$n \approx 4 \times 10^{13} \text{ cm}^{-3}, T_F \approx 300 \text{ nK}$$
 $\lambda = \frac{E_d}{E_f} \approx 15\%$

• SO coupling at the interaction level.

$$V(\vec{r}) = \frac{(g\mu)^2}{r^3} [\vec{F}_1 \cdot \vec{F}_2 - 3(\vec{F}_1 \cdot \hat{r})(\vec{F}_2 \cdot \hat{r})]$$

• SO coupled many-body physics (no Fermi surface splitting):

 Weyl p-wave triplet pairing (L=S=J=1)
 Y. Li, C. Wu, Sci. Rep., 2,392 (2012).

 SO coupled Fermi liquid:
 Y. Li, C. Wu, PRB 85, 205126 (2012).

Spin-orbit (SO) coupled Fermi liquid theory

• Landau functions: SO harmonic partial-wave decomposition.

$$\frac{N_0}{4\pi} f_{\alpha\alpha',\beta\beta'}(\hat{k}_1,\hat{k}_2) = \sum_{JJ_zLL'} Y_{JJ_z;LS}(\hat{k}_1,\alpha\alpha') F_{JJ_zLS;JJ_zL'S} Y^+_{JJ_z;L'S}(\hat{k}_2,\beta\beta')$$

- Landau matrices: an eigenvalue <-1
 → Pomeranchuk instability
- $J = 1^{-}$ (odd parity), L = S = 1.
- Transfer SO coupling to the single particle level (Rashba like).

Y. Li, C. Wu, PRB 85, 205126 (2012).

Topological SO zero sound

• Underdamped mode $s = \omega/(v_f q) > 1$: sound velocity > Fermi velocity.

$$s_{\lambda \ll 1} \approx 1 + 2e^{-2(1+1/2F_+)} = 1 + 2e^{-2-12/7\pi\lambda}, \qquad s_{\lambda \gg 1} \approx \frac{F_{\times}}{3} = \frac{\pi}{3\sqrt{3}}\lambda.$$

 $F_{+} = F_{10;01} + F_{00;11}$ $F_{\times} = \sqrt{F_{10;01}F_{00;11}}$

Outline

- Introduction.
- Mechanism for unconventional magnetic phase transitions.
 - Fermi surface instability of the Pomeranchuk type.
 - Mean field phase structures.
 - Collective modes and neutron spectroscopy.
- Spin-orbit coupled Fermi liquid theory magnetic dipolar interaction.

• Possible directions of experimental realization and detection methods.

A natural generalization of ferromagnetism

• The driving force is still exchange interactions, but in **nons-wave** channels.

	<i>s</i> -wave	<i>p</i> -wave	<i>d</i> -wave
SC/SF	Hg, 1911	³ He, 1972	high T _c , 1986
magnetism	Fe, ancient time	?	?

• Optimistically, unconventional magnets are probably not rare.

cf. Antiferromagnetic materials are actually very common in transition metal oxides. But they were not well-studied until neutron-scattering spectroscopy was available.

Search for unconventional magnetism (I)

• URu₂Si₂: hidden order behavior below 17.5 K.

U

Ru

Si

T. T. M. Palstra et al., PRL 55, 2727 (1985); M. B. Maple et al, PRL 56, 185 (1986)

helicity order (the *p*-wave α -phase);

Varma et al., Phys. Rev Lett. 96, 036405 (2006)

Search for unconventional magnetism (II)

• Sr₃Ru₂O₇ in the external B field – Orbital-assisted unconventional meta-magnetic state.

$$f_{\uparrow\uparrow}(\vec{p}_1, \vec{p}_2) = V(q=0) - \frac{1}{2} [1 + \cos 2\theta_{p_1 p_2}] V(p_1 - p_2)$$

 $f_{\uparrow\downarrow}(\vec{p}_1,\vec{p}_2) = V(q=0)$

W. C. Lee, C. Wu, PRB 80, 104438 (2009)

Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor

Can-Li Song,^{1,2} Yi-Lin Wang,² Peng Cheng,¹ Ye-Ping Jiang,^{1,2} Wei Li,¹ Tong Zhang,^{1,2} Zhi Li,² Ke He,² Lili Wang,² Jin-Feng Jia,¹ Hsiang-Hsuan Hung,³ Congjun Wu,³ Xucun Ma,²* Xi Chen,¹* Qi-Kun Xue^{1,2}

• Consistent with orbital ordering between dxz/dyz orbitals.

H. H. Hung, C. L. Song, Xi Chen, Xucun Ma, Q. K. Xue, C. Wu, Phys. Rev. B 85, 104510 (2012).

Detection (I): ARPES

• Angular Resolved Photo Emission Spectroscopy (ARPES).

ARPES in spin-orbit coupling systems (Bi/Ag surface), Ast et al., cond-mat/0509509.

band-splitting for two spin configurations.

• α and β -phases (dynamically generated spin-orbit coupling):

The band-splitting is proportional to order parameter, thus is temperature and pressure dependent.

Detection (II): neutron scattering and transport

- Elastic neutron scattering: no Bragg peaks; Inelastic neutron scattering: resonance peaks below T_c.
- Transport properties.

 β -phases: Temperate dependent beat pattern in the Shubnikov - de Hass magneto-oscillations of $\rho(B)$.

N. S. Averkiev et al., Solid State Comm. 133, 543 (2004).

Detection (III): transport properties

• Spin current induced from charge current (d-wave). Their directions are symmetric about the x-axis.

