# Interaction effects in topological systems: helical Luttinger edge liquid and Majorana flat band 

Congjun Wu<br>University of California, San Diego

Selected Reference

1. C. Wu, B. Andrei Bernevig, and S. C. Zhang, Phys. Rev. Lett. 96 , 106401(2006).
2. Dong Zheng, Guang-Ming Zhang, C. Wu, Phys. Rev. B 84, 205121 (2011).
3. Da Wang, Zhou-Shen Huang, Congjun Wu, Phys. Rev. B 89, 174510 (2014) .
4. Yi Li, Da Wang, Congjun Wu, New J. Phys 15, 085002(2013)

Inst. of Semi-cond, July 29, 2016

## Collaborators:

Dong Zheng
Yi Li
Da Wang
Zhousheng Huang

Guangming Zhang
Shoucheng Zhang
(Tsinghua/UCSD $\rightarrow$ industry)
(UCSD $\rightarrow$ Princeton $\rightarrow$ Johns Hopkins)
(UCSD $\rightarrow$ Nanjing Univ.)
(UCSD $\rightarrow$ Los Alamos)
(Tsinghua)
(Stanford)

Supported by NSF, AFOSR


## Outline

- Introduction.

Quantum anomalous Hall $\rightarrow$ topological insulators (TI) $\rightarrow$ topological superconductor

- Stability criterial of interacting edge states of 2D TIs, and QMC study of interacting 2D TIs.

Helical Luttinger liquid and its stability against strong interactions.

- Spontaneous time-reversal symmetry breaking in Majorana flat-bands.


## 2D quantum hall systems

- Chiral edge modes responsible for quantized transverse charge transport; stable against disorder and interactions.
- Magnetic band-structure characterized by the topological TKNN (Chern) number.


Halperin, PRB 25, 2185 (1982).

## Honeycomb lattice system (graphene)



- 2-component spinor: A-B $\rightarrow$ two-level with a pseudo-B field.

$$
H(\vec{k})=\vec{h}(\vec{k}) \cdot \vec{\tau}
$$



K K'

- $h(k)$ is planar.

$$
h_{x}(\vec{k})=\sum_{i=1}^{3} \cos \vec{k} \cdot \hat{e}_{i} \quad h_{y}(\vec{k})=\sum_{i=1}^{3} \sin \vec{k}_{i} \hat{e}_{i}
$$

- Gapless Dirac cones $\leftrightarrow \rightarrow$ vanishing of $\mathrm{h}(\mathrm{k})$;
 protected by symmetry and topology.


## The Haldane model - complex NNN hopping

- TR breaking $\rightarrow$ Mass term flips the sign at K and K . Work at UCSD!

$$
h_{z}(\vec{k})=m(\vec{k})=t^{\prime} \sin \delta \sum_{i j} \sin \vec{k} \cdot\left(\hat{e}_{i}-\hat{e}_{j}\right)
$$

E. Fradkin, PRL 57, 2967 (1986)
F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).


## Anomalous Hall effect (AHE) and its quantization

- Berry phase and curvature in momentum space.

$$
\vec{A}(k)=\left\langle\psi_{L, k}\right| \vec{i}_{k}\left|\psi_{L, k}\right\rangle, \quad \Omega_{z}(\vec{k})=\partial_{k_{y}} A_{k_{y}}-\partial_{k_{y}} A_{k_{x}}
$$

- Anomalous velocity.

$$
\begin{aligned}
& \dot{\vec{r}}=\nabla_{k} \varepsilon(\vec{k})-\dot{\vec{k}} \times \vec{\Omega}(\vec{k}) \\
& \dot{\vec{k}}=q \vec{E}+q \dot{\vec{r}} \times \vec{B}(\vec{r})
\end{aligned}
$$

- Inter-band Van Vleck type response.

$$
\sigma_{x y}=\frac{e^{2}}{h} \int \frac{d k_{x} d k_{y}}{2 \pi} \Omega_{z}(\vec{k}) n_{f}(\vec{k})
$$

Luttinger, PR, 112793 (1958), Xiao, Chang, Niu, RMP 82, 1959 (2010).

$$
\Omega_{z}(K)=\Omega_{z}\left(K^{\prime}\right)
$$



## Hall conductance as topological Chern (TKNN) number

- Brillouin zone has no boundary - torus.

$$
v=\oiint \frac{d^{2} \vec{k}}{2 \pi} \Omega_{z}(\vec{k})=\oiint \frac{d^{2} \vec{k}}{2 \pi}(\nabla \times \vec{A}(\vec{k}))= \pm 1
$$

- Topology in the Kubo formula (linear response).


$$
\begin{aligned}
& \sigma_{x y}=\lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0} \frac{i}{\omega} \operatorname{Im}<j_{x}(q, \omega) j_{y}(-q,-\omega)> \\
& =\frac{e^{2}}{8 \pi^{2} \hbar} \iint d k_{x} d k_{y} \hat{h} \cdot\left(\partial_{k_{x}} \hat{h} \times \partial_{k_{y}} \hat{h}\right)= \\
& =\frac{e^{2}}{2 \pi \hbar} \int \frac{d^{2} \vec{k}}{2 \pi} \Omega_{z}(\vec{k})=V \frac{e^{2}}{h}
\end{aligned}
$$

Thouless, Kohmoto, Nightingale, den Nijis, PRL 49, 405 (1982)


Exp: C. Z. Chang et al, Science 340, 167 (2013)

## Graphene as a 2D QSH or topo-insulator (TI): tiny gap

- Kane-Mele model: spin-orbit (SO) coupling = two copies of Haldane model.


Kane and Mele, PRL95, 146802(2005); PRL 95, 226801(2005).

- Helical edge states.



## Instability: the single-particle back-scattering

$$
H_{0}=v_{f} \int d x\left(\psi_{R \uparrow}^{+} i \partial_{x} \psi_{R \uparrow}-\psi_{L \downarrow}^{+} i \partial_{x} \psi_{L \downarrow}\right)
$$

- Kane and Mele : The non-interacting helical systems remain gapless against disorder and impurity scatterings.

- Single particle backscattering term breaks TR symmetry $\left(T^{2}=-1\right)$.

$$
H_{b g}=\psi_{R \uparrow}^{+} \psi_{L \downarrow}+\psi_{L \downarrow}^{+} \psi_{R \uparrow} \quad T^{-1} H_{b g} T=-H_{b g}
$$

- How about interacting effects?


## High Tc superconductivity: zero-energy Andreev boundary modes

[10] boundary:
$\Delta\left(\vec{k}_{\text {in }}\right)=\Delta\left(\vec{k}_{\text {out }}\right)$

[11] boundary:
$\Delta\left(\vec{k}_{\text {in }}\right)=-\Delta\left(\vec{k}_{\text {out }}\right)$

C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994)
L. H. Greene, et al, PRL 89, 177001 (2002)




## Majorana boundary zero modes

- Single-component fermion p-wave pairing in 1D - Kitaev 2001.


$$
\begin{gathered}
\gamma=\int d x u_{0}(x) \psi(x)+v_{0}(x) \psi^{+}(x) \\
u_{0}(x)=v_{0}^{*}(x)
\end{gathered}
$$



- Spin-orbit coupled superconducting wire under magnetic field - in debate.
P. A. Lee, arxiv 0907.2681

Sau, Lutchyn, Das Sarma PRL 2010.
Liu, Potter, Law, Lee, PRL 109, 267002 (2011);

He, Ng, Lee, Law, PRL (2014).
L. P. Kouwenhouven, et al, Science 3361003 (2012);
C. M. Marcus et al, PRB 87, 241401 (2013).

## Observation of the Majorana mode



H. H. Sun, et al, PRL 116, 257003(2016)

## Majorana edge modes in quasi-1D Topo superconductors

Andreev bound states localized at ends $z_{0}$ with energy zero.


$$
\begin{gathered}
\gamma_{i}=\int \mathrm{d} x\left\{u_{0}(x) \mathrm{e}^{-\mathrm{i} \frac{\hat{\theta}_{4}}{2}-\mathrm{i} \frac{\pi}{4}} \psi_{i}(x)+v_{0}(x) \mathrm{e}^{\left.\mathrm{i} \frac{\hat{\theta}_{\frac{1}{}}^{2}+\mathrm{i} \frac{\pi}{4}}{4} \psi_{i}^{\dagger}(x)\right\}}\right. \\
\cdots \\
u_{0}(x)=v_{0}(x) \approx \mathrm{e}^{-\frac{L-x}{k}} \sin k_{\mathrm{f}} x
\end{gathered}
$$

Dispersionless in $\mathrm{k}_{\mathrm{x}}$ and $\mathrm{k}_{\mathrm{y}}$

## Andreev Bound States <br> $\rightarrow$ 1D or 2D Majorana fermions lattices.

Yi Li, Da Wang, Congjun Wu, New J. Phys 15, 085002(2013)

Kitaev, 2000;
Tewari, et al, 2007;
Alicea, et al, 2010;
etc...

## Outline

- Introduction.

Quantum anomalous Hall $\rightarrow$ topological insulators (TI) $\rightarrow$ topological superconductor

- Stability criterial of interacting edge states of 2D TIs, and QMC study of interacting 2D TIs.

Helical Luttinger liquid and its stability against strong interactions.

- Spontaneous time-reversal symmetry breaking in Majorana flat-bands.


## Interacting 2D TI edges: helical Luttinger liquid (HLL)



## upper edge

## lower edge

- Helical Luttinger liquid is special.

1. chiral Luttinger liquids in quantum Hall edges break TR symmetry;
2. spinless non-chiral Luttinger liquids: $\mathrm{T}^{2}=1$;
3. non-chiral spinful Luttinger liquids have an even number of branches of TR pairs.

Kane et al., PRL 2005, C. Wu et al., PRL 2006.

## The "no-go" theorem for helical Luttinger liquids

- 1D HLL with an odd number of components can NOT be constructed in a purely 1D lattice system.

- Double degeneracy occurs at $\mathrm{k}=0$ and $\pi$.
- Periodicity of the Brillouin zone.

- HLL with an odd number of components can appear as the edge states of a 2-D system.
H. B. Nielsen et al., Nucl Phys. B 185, 20 (1981); C. Wu et al., Phys. Rev. Lett. 96, 106401 (2006).


# Helical edge modes are stable under weak interactions, but can be destabilized by strong interactions! 

C. Wu, B. A. Bernevig, S. C. Zhang, PRL 96, 1060401 (2006); C. Xu, J. Moore, PRB 2006.

## Two-particle correlated back-scattering

- TR symmetry allows two-particle correlated back-scattering.


$$
\begin{aligned}
G_{2}(t, 0) & =\left\langle\psi_{R \uparrow 1}(t) \psi_{R \uparrow 2}(t) \psi_{L \nu_{2}}^{+}(0) \psi_{L \downarrow 1}^{+}(0)\right\rangle_{\text {compected }} \neq 0 \\
H_{u m m} & =\sum_{\langle i j} s_{x}(i) s_{x}(j)-s_{y}(i) s_{y}(j), \\
& \text { or } \sum_{\langle i j\rangle} s_{x}(i) s_{y}(j)+s_{y}(i) s_{x}(j)
\end{aligned}
$$

- Microscopically, this Umklapp process can be generated from anisotropic spin-spin interactions.
- Effective Hamiltonian: $\quad H_{u m}=g_{u} \int d x e^{i 4 k_{f}} \psi_{R \uparrow}^{+}(x) \psi_{R \uparrow}^{+}(x+\varepsilon) \psi_{L \downarrow}(x+\varepsilon) \psi_{L \downarrow}(x)+h . c$.
- $\mathrm{U}(1)$ rotation symmetry $\rightarrow \mathrm{Z}_{2} . \quad s_{x} \rightarrow-s_{x}, \quad s_{y} \rightarrow-s_{y}, \quad s_{z} \rightarrow s_{z}$


## Bosonization+Renormalization group

- Sine-Gordon theory at $\mathrm{k}_{\mathrm{f}}=\pi / 2$.

$$
\begin{gathered}
\psi_{R \uparrow} \propto e^{i \sqrt{4 \pi} \phi_{R \uparrow}}, \psi_{L \downarrow} \propto e^{-i \sqrt{4 \pi} \phi_{L \downarrow}} ; \phi(\theta)=\phi_{R \uparrow} \pm \phi_{L \downarrow} \\
H_{0}=\int d x \frac{v}{2}\left\{\frac{1}{K}\left(\partial_{x} \phi\right)^{2}+K\left(\partial_{x} \theta\right)^{2}\right\}+\frac{g_{u}}{2(\pi a)^{2}} \cos \sqrt{16 \pi} \phi
\end{gathered}
$$

- The scaling dimension:

$$
\begin{gathered}
\Delta_{g_{u}}=\frac{(\sqrt{16 \pi K})^{2}}{4 \pi}=4 K \\
\frac{d g_{u}}{d \ln L}=\left(2-\Delta_{g_{u}}\right) g_{u}
\end{gathered}
$$



## Bosonization+Renormalization group

- The cosine term is relevant at $K<1 / 2$ (strong repulsion); gap opens with

$$
g_{u} \rightarrow \pm \infty \quad\langle\cos \sqrt{16 \pi} \phi\rangle \neq 0 \quad \Delta \approx a^{-1}\left(g_{u}\right)^{\frac{1}{4(1 / 2-K)}}
$$

- Order parameters $2 \mathrm{k}_{\mathrm{f}}$ SDW orders $\mathrm{N}_{\mathrm{x}}\left(\mathrm{g}_{\mathrm{u}}<0\right)$ or $\mathrm{N}_{\mathrm{y}}$ at $\left(\mathrm{g}_{\mathrm{u}}>0\right)$.

$$
N_{x} \propto \cos \sqrt{4 \pi} \phi, \quad N_{y} \propto \sin \sqrt{4 \pi} \phi
$$

- TR symmetry is spontaneously broken in the ground state.
- At $\Delta \gg T>0 \mathrm{~K}$, TR symmetry must be restored by thermal fluctuations and the gap $\rightarrow$ pseudo gap.


## Random two-particle back-scattering

- Scattering amplitudes $g_{u}(x) e^{i \alpha(x)}$ are quenched Gaussian variables.

$$
\begin{gathered}
H_{\mathrm{int}}=\int d x \frac{g_{u}(x)}{2(\pi a)^{2}} \cos (\sqrt{16 \pi} \phi+\alpha(x)) \\
\left\langle g_{u}(x) e^{i \alpha(x)} g_{u}(y) e^{-i \alpha(y)}\right\rangle=D \delta(x-y) \quad \frac{d D}{d \ln t}=(3-8 K) D
\end{gathered}
$$

Giamarchi, Quantum physics in one dimension, oxford press (2004).

- If $\mathrm{K}<3 / 8$, gap D opens. SDW order is spatially disordered but static in the time domain.
- At small but finite temperatures, gap remains but TR is restored by thermal fluctuations.


## Single impurity scattering

- Boundary Sine-Gordon equation.

$$
\begin{aligned}
& H_{\mathrm{int}}=\int d x \frac{g_{u}}{2(\pi a)^{2}} \delta(x) \cos (\sqrt{16 \pi} \phi) \quad \frac{d g_{u}}{d \ln t}=(1-4 K) g_{u} \\
& \text { C. Kane and M. P. A. Fisher, PRB 46, } 15233 \text { (1992). }
\end{aligned}
$$

- If $K<1 / 4, g_{u}$ term is relevant. $1 D$ line is divided into two segments.



## Kondo problem: magnetic impurity scattering

$$
H_{K}=\int d x \delta(x)\left\{\frac{J_{\|}}{2}\left(\sigma_{-} \psi_{R \uparrow}^{+} \psi_{L \downarrow}+\sigma_{+} \psi_{L \downarrow}^{+} \psi_{R \uparrow}\right)+J_{z} \sigma_{z}\left(\psi_{R \uparrow}^{+} \psi_{R \uparrow}-\psi_{L \nu}^{+} \psi_{L \downarrow}\right)\right\}
$$

- Poor man RG: critical coupling $\mathrm{J}_{\mathrm{z}}$ is shifted by interactions.
- If $\mathrm{K}<1$ (repulsive interaction), the Kondo singlet can form with ferromagnetic couplings.



## Instability criterial for helical Luttinger liquid

- Two-particle correlated back-scattering is allowed by TR symmetry, and becomes relevant at:
$\mathrm{K}_{\mathrm{c}}<1 / 2$ for Umklapp scattering at commensurate fillings.
$\mathrm{K}_{\mathrm{c}}<3 / 8$ for disordered two-particle scattering.
$\mathrm{K}_{\mathrm{c}}<1 / 4$ for a single impurity two-particle scattering.
- The Kondo critical point is shifted by interaction.


## The Kane-Mele-Hubbard (KMH) model

- Double of the Haldane's model quantum anomalous Hall model: spin up and down components with opposite flux patterns.

$$
\begin{aligned}
& H_{N N}=-t \sum_{\vec{r} \in A}\left\{c_{\alpha}^{+}\left(\vec{r}_{A}\right) c_{\alpha}\left(\vec{r}_{B}\right)+h . c .\right\} \\
& H_{N N N}=\sum_{\overrightarrow{r^{\prime}}} t^{\prime} e^{i \delta}\left\{c_{\uparrow}^{+}\left(\vec{r}_{A}\right) c_{\uparrow}\left(\vec{r}_{A}^{\prime}\right)+c_{\uparrow}^{+}\left(\vec{r}_{B}\right) c_{\uparrow}\left(\vec{r}_{B}^{\prime}\right)\right\} \\
& +\sum_{\vec{r}^{\prime}} t^{\prime} e^{-i \delta}\left\{c_{\downarrow}^{+}\left(\vec{r}_{A}\right) c_{\downarrow}\left(\vec{r}_{A}^{\prime}\right)+c_{\downarrow}^{+}\left(\vec{r}_{B}\right) c_{\downarrow}\left(\vec{r}_{B}^{\prime}\right)\right\}+\text { h.c. }
\end{aligned}
$$



- The Hubbard interaction.

$$
H_{U}=U \sum_{\vec{r}}\left(n_{\uparrow}(\vec{r})-\frac{1}{2}\right)\left(n_{\downarrow}(\vec{r})-\frac{1}{2}\right)
$$



## Monte－Carlo（Aesthetics of brutal force：大巧不工）

－Probability distribution：

$$
w\left(\left\{\sigma_{i}\right\}\right)=\exp \left[-\beta H\left(\left\{\sigma_{i}\right\}\right)\right] / Z
$$

$$
H=-J \sum_{\langle i j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}
$$

－Observables：magnetization and susceptibility．

$$
M=\frac{1}{N} \sum_{\{\sigma\rangle} w\{\sigma\}\left(\sum_{i} \sigma_{i}\right) \quad \chi=\frac{1}{N^{2}} \sum_{\{\sigma \mid} w\{\sigma\}\left(\sum_{i} \sigma_{i}\right)^{2}
$$

－Importance sampling and detailed balance（Metropolis）：
1．Start from a configuration $\{s\}$ with probability $w(\{s\})$ ． Get a trial configuration by flipping a spin．
2．Calculate acceptance ratio：$r=w\left(\left\{\sigma_{\text {trial }}\right\}\right) / w(\{\sigma\})$ ．
3．If $r>1$ ，accept it；If $r<1$ ，accept it wit the probability of $r$ ．

## Auxiliary field QMC for fermions

Blankenbecler, Scalapino, and Sugar. PRD 24, 2278 (1981)

- Using path integral formalism, fermions are represented as Grassmann variables.
- Transform Grassmann variables into probability.


Fermions:<br>Grassmann number

- Decouple interaction terms using Hubbard-Stratonovich (H-S) bosonic fields.
- Integrate out fermions and the resulting fermion functional determinants work as statistical weights.


## The sign (phase) problem!!!

- Generally, the fermion functional determinants are not positive definite. Sampling with the absolute value of fermion functional determinants.

$$
\langle O\rangle=\langle\langle\operatorname{sign} \times O\rangle\rangle /\langle\langle\operatorname{sign}\rangle\rangle
$$

- Huge cancellation in the average of signs.
- Statistical errors scale exponentially with the inverse of temperatures and the size of samples.
- Finite size scaling and low temperature physics inaccessible.


## Absence of the sign problem in the KMH model

- Projector method ( $\mathrm{T}=0 \mathrm{~K}$ ).
- H-S decomposition. P-h transf. one spin component.

$$
\begin{aligned}
& \langle\hat{O}\rangle=\frac{\left\langle\psi_{0}\right| \hat{O}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle}=\frac{\left\langle\psi_{T}\right| e^{-\theta} \hat{O}^{-\theta} \hat{O}^{-\theta}\left|\psi_{T}\right\rangle}{\left\langle\psi_{T}\right| e^{-2 \theta H}\left|\psi_{T}\right\rangle}
\end{aligned}
$$

- Determinants factorize into complex conjugate pairs $\rightarrow$ positive definite statistical weight.

$$
\operatorname{Det}(\uparrow)=\operatorname{Det}^{*}(\downarrow)
$$

## The global phase diagram of KMH model at half-filling

- Sign-problem free QMC.



Dong Zheng, GuangMing Zhang, C. Wu, Phys. Rev. B 84, 205121 (2011).

- A large region with paramagnetic bulk but antiferromagnetic edge states.


## Edge properties with non-magnetic bulk

- AF form factor for each zig-zag line from the edge to the center.
- AF is weakest in the middle and strongest at the edge.


8*8*2; x periodical; y: open


$$
\lambda=0.1, U_{c} \approx 5
$$

## AF two-point correlations along the edge

$$
\begin{aligned}
& S_{x}+i S_{y}=\psi_{R \uparrow}^{+} \psi_{L \downarrow} \propto e^{i \sqrt{4 \pi} \phi} \\
& \left.\left\langle S_{x}(x) S_{x}\left(x^{\prime}\right)\right\rangle\right)^{\sim} 1 /\left|x-x^{\prime}\right|^{-2 K}
\end{aligned}
$$



A narrow strip 34*4*2

- The two different phases according to $K<(>) 1 / 2$.

$$
\begin{array}{rl}
K=0.8 & U=1 \\
0.5 & U=1.5 \\
0.4 & \\
0=2
\end{array}
$$

## Large U: bulk antiferromagnetism (AF)

- Easy plane antiferromagnet.

NN: $\quad \frac{4 t^{2}}{U} \vec{S} \cdot \vec{S} \quad$ NNN: $\quad \frac{4 \lambda^{2}}{U}\left(-S_{x} \cdot S_{x}-S_{x} \cdot S_{x}+S_{z} \cdot S_{z}\right)$

- AF form factor: $S_{A F}^{x x}=\frac{1}{N}\langle G|\left[\sum_{i}(-1)^{i} S_{i}^{x}\right]^{2}|G\rangle$,


Meng et al., Nature 2010. Hohenadler, Lang, and Assaad arxiv:1011.5063; Zheng, Wu, G. M. Zhang, arxiv:1011.5858.


## Outline

- Introduction.

Quantum Hall $\rightarrow$ Quantum anomalous Hall $\rightarrow$ topological insulators (TI)

- Stability criterial of the interacting edge states of 2D TIs, and QMC study of interacting 2D TIs.

Strong interactions can gap out the helical edge states.

- Spontaneous time-reversal symmetry breaking in Majorana flat bands.


## Majorana edge modes in quasi-1D Topo superconductors

Andreev bound states localized at ends $z_{0}$ with energy zero.


$$
\begin{gathered}
\gamma_{i}=\int \mathrm{d} x\left\{u_{0}(x) \mathrm{e}^{-\mathrm{i} \frac{\hat{\theta}_{4}}{2}-\mathrm{i} \frac{\pi}{4}} \psi_{i}(x)+v_{0}(x) \mathrm{e}^{\left.\mathrm{i} \frac{\hat{\theta}_{\frac{1}{}}^{2}+\mathrm{i} \frac{\pi}{4}}{4} \psi_{i}^{\dagger}(x)\right\}}\right. \\
\cdots \\
u_{0}(x)=v_{0}(x) \approx \mathrm{e}^{-\frac{L-x}{k}} \sin k_{\mathrm{f}} x
\end{gathered}
$$

Dispersionless in $\mathrm{k}_{\mathrm{x}}$ and $\mathrm{k}_{\mathrm{y}}$

## Andreev Bound States <br> $\rightarrow$ 1D or 2D Majorana fermions lattices.

Yi Li, Da Wang, Congjun Wu, New J. Phys 15, 085002(2013)

Kitaev, 2000;
Tewari, et al, 2007;
Alicea, et al, 2010;
etc...

## Majorana Josephson coupling between chains


$-J_{\text {majorana }} i \gamma_{1} \gamma_{2} \cos \left(\frac{\theta_{1}-\theta_{2}^{\prime}}{2}\right)$
[Kitaev, 2000; Yakovenko et al, 2004;
Fu and Kane, 2009; Xu and Fu, 2010]

## Superconducting phase - Majorana fermion coupling

$$
H_{t}=-J \sum_{\langle i, j\rangle} \cos \left(\theta_{i}-\theta_{j}\right)-i J_{\text {najajorana }} \sum_{\langle i, j\rangle} \sin \left(\frac{\theta_{i}-\theta_{j}}{2}\right) r_{i} \gamma_{j}
$$

- Possibility (I): Uniform phase, TR symmetry maintained.

Majorana edge modes decouple - flat edge-bands.
But density of states diverges $\rightarrow$ intrinsic instability!!

- Possibility (II): Spontaneous TR symmetry breaking.

Majorana modes coupled and develop dispersion - lowering energy.

## A self-consistent calculation (B-de G)

$$
\begin{aligned}
H_{\mathrm{mf}}=-\sum_{i}\{ & \left.\left\{t_{x} c_{i}^{*} c_{i+e_{x}}+t_{y} c_{i}^{*} c_{i+\hat{e}_{y}}+\text { h.c. }\right)-\mu c_{i}^{\dagger} c_{i}\right\}-V \sum_{i}\left\{\Delta_{i, i+\hat{e}_{x}}^{*} c_{i+e_{x}} c_{i}+\text { h.c. }\right\} \\
& +V \sum_{i} \Delta_{i, i, e_{x}^{*}}^{*} \Delta_{i, i+e_{x}},
\end{aligned}
$$



- Supercurrent distribution - non-
- Superfluid phase distribution quantized vortex-antivortex


## Local Density of States (LDOS)



## Summary

- No-go theorem: HLL with odd number of components can not be constructed in a purely 1D lattice system.
- Helical edge states are stable at weak interactions but are gapped out with increasing interactions.
- Sign-problem free simulation on Kane-Mele-Hubbard model --

Magnetic fluctuations are strongest on the edge; bulk paramagnetism + edge AFM

- Spontaneous vortex-antivortex formation in Majorana edge flat bands.

