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Outline

e Introduction: complex number = quaternion.

e Quaternionic analytic Landau levels in 3D/4D.

Analyticity : a useful rule to select wavefunctions for non-
trivial topology.

Cauchy-Riemann-Fueter condition.

3D harmonic oscillator + SO coupling.

e 3D/4D Landau levels of Dirac fermions: complex quaternions.

An entire flat-band of half-fermion zero modes (anomaly?)



The birth of '/": not from x° = -1

e Cardano formula for the cubic equation.

X’ +pX+0=0 wmb x =c +c, x,, =ce + c,e

Cio = 3\/— g + JA discriminant; A = [gj + [ﬁj

o Start with real coefficients, and end up with three real roots,
but no way to avoid “i”.



The beauty of “complex”

e Gauss plane: 2D rotation (angular momentum)
e Euler formula: e = cos@ + isind (U(1) phase: optics, QM)

e Complex analyticity: (2D lowest Landau level)

—+ 71— =0 :
Ox oy 271

of . of _ L dr () = £(z,)

7 = %

e Algebra fundamental theorem;
Riemann hypothesis — distributions of prime numbers, etc.

e Quan Mech: “i” appears for the first time in a wave equation.

., O
Schroedinger Eq: 'ha"” =Hy



Further extension: quaternion (Hamilton number)

e Three imaginary units i, j, k.

q=X+Yyl+zJ+uk =j=k’=-1
e Division algebra: ab =0 < a=0,0r, b =0

e 3D rotation: non-commutative.
J=—]i=k; Jk=-k=1; ki=-lk=|

e Quaternion-analyticity (Cauchy-Futer integral)

—+ 71—+
Ox oy Dg £(q)
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Quaternion plaque: Hamilton 10/16/1843
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3D rotation as 15t Hopf map

e Rotation axis (, rotation angle: 7.

° O <—> imaginary unit: o(Q) = 1sin@cosg + jsinfsing + k cos d

rotation R €= unit quaternion q: ¢ = cosg + w(Q) sing e S’
e 3D vector r «= imaginary quaternion. r = xi + yj + zk

e 3D rotation €«=> Hopf map S3-> S2. 15t Hopf map

r=2z=%k

7 = R(7) = gkqg™
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Review: 2D Landau level in the symmetric gauge

: 1 = ~ - B, .
symmetric gauge: H,, =—(F - EA)z, A = EZ X I

2M C

Lowest Landau level wavefunction:
complex analyticity

(a, + ia,)y,,(2,2) =0, (z = x + iy)

a, = L(){+1'/DX) a, = L(y+1'py)
V2 2




Advantages of Landau levels (2D)

e Simple, explicit and elegant.

e Complex analyticity - selection of non-trivial WFs.

1. The 2D ordinary QM WF y(x, ¥) belongs to real analysis
2. Cauchy-Riemann condition > complex analyticity (chirality).

3. Chirality is physically imposed by the B-field.

e Analytic properties facilitate the construction of Laughlin WF,

‘Z“z

— 172
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Pioneering Work: LLs on 4D-sphere ---Zhang and Hu
Science 294, 824 (2001).

* Particles couple to the SU(2) gauge field on the S* sphere.

hz 2 . 1
B 2MR? 1 Z;‘é\ab’ A, =X, (_Iab T Ak) =X (_Iaa + Aa)

» Second Hopf map. The spin value | o< R”. 5

X, =w.Tiw, n=uo,u, S’ —/S R/

* Single particle LLLs

(x,,n, [mmmm,) =y yly by

- 4D integer and fractional TIs with time reversal symmetry
- Dimension reduction to 3D and 2D Tls (Qi, Hughes, Zhang).
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Our recipe

1. 3D harmonic wavefunctions.

2. Selection criterion: quaternionic analyticity (physically
imposed by SO coupling).

Symmetric-like gauge (3D quantum top): t"

Complex analyticity in a flexible e;-e, plane "y
with chirality determined by S along \\\

the e direction.

Landau-like gauge: spatial separation of 2D " 7
Dirac modes with opposite helicites.

Generalizable to higher dimensions.




2D LLs in the symmetric gauge

1 = e~ -
H,,, =—(@PF =47, A=
2DLL 2/1/ C

5. .
— Z X I

2

e 2D LL Hamiltonian = 2D harmonic oscillator (HO)+ orbital
Zeeman coupling.

2
H,,, :§—M+%/l/w2r2$wLZ, W = 6)2//5/, 1, = h—;
C e

« H,,. has the same set of eigenstates as 2D HO.
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Organization - non-trivial topology
I(hw)=2n_+|m|+1

2D HO

_n -l2f/en)
iy =2¢ E,y,, /(ho) = 2n,

o If viewed horizontally, they are topologically trivial.

e If viewed along the diagonal line, they become LLs.

[(hw) =—m

Zeeman 15



3D — Aharanov-Casher potential !!

e The SU(2) gauge potential:
~ ] 1

2D: A=ZBixf —> 3D: A, =>06,,xT
? 2

e 3D LL Hamiltonian = 3D HO + spin-orbit coupling.

P* 1 . leg | hC
H° = +=Mo’r’ —ws - L o=_-"" | = |—.
- 2M 2 ’ 2Mc |eg |

1 M

T P__ 2__a)2r.2

2M( C A 2

e The full 3D rotational symm. + time-reversal symm.
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3D HO

Constructing 3D Landau Levels

l(hw)=2n_+1 +g

3D HO

L 2

SOC : 2 helicity

.O_ 2. branches

L oT! )

o) i —|+=

J.=l1£=.

T .

2
1 R
= - P Cmerrt—we L

o-L= _
{— (I+1)7% for j_

2m

for |,

3D LL
A
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The coherent state picture for 3D LLL WFs

» The highest weight state jz = j+. Both L, and SZ are conserved.

() = [<X ; y)]] SIé
z + O
 Coherent states: spin perpendicular .'
to the orbital plane. \

() =6 +16) - Tl ® g,

WJ +> high

« LLLs in N-dimensions: picking up any two axes and define a
complex plane with a spin-orbit coupled helical structure.
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Comparison of symm. gauge LLs in 2D and 3D

e 1D harmonic levels: real polynomials. ”
e 2D LLs: complex analytic polynomials.

—|2[* /(215) -
WEZH = 7"e i : Z =X+ 1y, m > 0. Phase

SIIé

e 3D LLs: SU(2) group space -
quaternionic analytic polynomials. h\

- \

Y (@) = [(8 + 18) - TT ® e "

l//j+ s high

Right-handed triad



Quaternionic analyticity

e Cauchy-Riemann condition and loop integral.

1 1
NN g dz 9(z)=9(z,)
ox oy 2m° 71,

e Fueter condition (left analyticity): f (x,y,z,u) quaternion-valued
function of 4-real variables.

e Cauchy-Fueter integrals over closed 3-surface in 4D.

|
5f+iaf+jaf+ki:o Z—ﬁﬁ{f/f(q—qo)ﬁq f(q) = £(g,)

oXx oy ~o07 o

K(o)= | X -yl-—1z] - Uk
q)= 2 2 2 2 212
glgl G+ +72+d°)

D(q) =dyadz Adu—idxAdz Adu+ jdx Ady Adu—kdxAdy Adz
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Mapping 2-component spinor to a single quaternion

- fj » (X, ¥, Z) - ‘//1,J’+,jz + J'WZ’J;,JZ

e TRreversal: joy" —» -fj ; U(1l) phase e’ - fe”

. . 2o o z'ﬂoy 9 2 0
SU(Z) rotation: e’y e lfie’ l//_)ejzf;ez v e f
» Reduced Fueter condition in 3D: | 5 o Pyl AR

e Fueter condition is invariant under rotation #(a, g, ) .
If Fsatisfies Fueter condition, so does Rf.

_17

a .p .y
a p . o
(Rf) (x, 7,2z) = e %e e *flx,y' 7), 7= Rr



Quaternionic analyticity of 3D LLL

e The highest state jz=j is obviously 7. . = (x + 1y)’

_ Jed ;=
analytic.

e All the coherent states can be obtained from the highest states
through rotations, and thus are also analytic.

o All the LLL states are quaternionic analytic. QED.

e Completeness: Any quaternionic analytic polynomial corresponds
to a LLL wavefunction.



Helical surface states of 3D LLs

from bulk to surface

s = P T - 05 L
2M

!

sz)lzne =V; (I—Io)h/R :Vér (p’xé’-)_lu

e Each LL contributes to one helical
Fermi surface.

e Odd fillings yield odd numbers of ’3
Dirac Fermi surfaces.



Analyticity condition as Weyl equation (Euclidean)

2D complex analyticity

ZZ
oy

v, (z,z) = f(z)e

8f 8f
8X 8}/

=0

3D: quaternionic analyticity

or or  of

+ 1 =0
1504 8 y 82

4D: quaternionic analyticity

1D chiral edge mode
w(t, x) = f(x - t)

oy  dy _ 0
ot 0x

2D helical Dirac surface mode

3D Weyl boundary mode

dy v v v _,

ot Y Ox " Oy © 0z
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Review: 2D LL Hamiltonian of Dirac Fermions

2D € e - B .
HLL :VF{(px_EAK)O-X‘I'(py_EA\/)O'y}, A = EZX

N

e Rewrite in terms of complex combinations of phonon operators.

2D
H =

@Fh[ 0 i(a:—iai)} ai:%q?i';pi), =%,

l, (—i(a, +ia) 0
. . E 4
e LL dispersions: E, = +hon n=2
n=1
e Zero energy LL is a branch of half-fermion N=0
modes due to the chiral symmetry. -
n=-1

|z
LL z" | Tai n=-2
LIJO;/H — (O je °. 26



3D/4D LL Hamiltonian of Dirac Fermions

i, 1} <—> 2D harmonic oscillator a,al
U, 7, J, ki
il sttt <> 4D harmonic oscillator ~ {a,, a,, a,, a|
1010 =10,
e “complex quaternion”: &, — ia, — Jja, — ka,

e 4D Dirac LL Hamiltonian:

+ . .
74D Dirac _ ha)[ 0 a, +1a, + ja, + /(a;]
LL -

2 \a, —ia, — ja, — ka, 0
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3D LL Hamiltonian of Dirac Fermions

HgDDiraC_ha) 0 Ig-da") lw 0 G- (p+inr/l1?)
“ 2 \-ig-a 0 ) 2\&-(p-inr/l1?) 0

 This Lagrangian of non-minimal Pauli coupling.

-7 . h —_ 7
L = yiihy,0, —vy;0,)ly + ;— vo. "y,

8

;

X

/

8

7 :
Oy = _5[7/0’7/1]’ F =

e A related Hamiltonian was studied before under the name of
Dirac oscillator, but its connection to LL and topological properties

was not noticed.

Benitez, et al, PRL, 64, 1643 (1990)
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LL Hamiltonian of Dirac Fermions in Arbitrary Dimensions

» For odd dimensions (D=2k+1).

H D-dm h_a) O

2 \-ilY-a

* For even dimensions (D=2k).

D—dim _ ho
Hy =

2 O kD
iE &y, = JZ I'," a,
i=1

ir.a”

0

29



A square root problem: \/H 5D Schrosdinger _ | 30 Dirac

e The square of H” "™ gives two copies of (H "), with opposite
helicity elgenstates

/E 520 0 \
(H 3DD|raC) p>2 . M _— G+§
hol2  2M 2 0 —(E.5+§h)
\

e LL solutions: dispersionless with respect to j. Eigen-states
constructed based on non-relativistic LLs.

ES =thoyn, The zeroth LL:
LLL
pro= 1 _l//nr,m,jz | P [l/jhllz j
\/E i I Wnr—l,j_,l+1,jz O 20



Zeroth LLs as half-fermion modes

e The LL spectra are symmetric with respect to zero energy,
thus each state of the zeroth LL contribtites 2- fermion charge
depending on the zeroth LL is filled or empty.

2
e For the 2D case, the vacuum charge density is J, = iEF B,

known as parity anomaly.

G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984).

e For our 3D case, the vacuum charge E 4

density is plus or minus of the half of ”iz

the particle density of the non- + n=1

relativistic LLLs. p=0-pococooo-ng
u=0

n=-—

e What kind of anomaly? n=-2



Helical surface mode of 3D Dirac LL

H 3D
 The mass of the vacuum outside M — +oo

H3D:H3D HSD: M rjé:
< LL > p,.o_,_ —M

* This is the square root problem of the
open boundary problem of 3D non-

relativistic LLs. 4 E //

 Each surface mode for n>0 of the
non-relativistic case splits a pair
surface modes for the Dirac case.

 The surface mode of Dirac zeroth-LL

of is singled out. Whether it Is upturn T
or downturn depends on the sign of B \

the vacuum mass.



Conclusions

* We hope the quaternionic analyticity can facilitate the
construction of 3D Laughlin state.

* The non-relativistic N-dimensional LL problem is a N-
dimensional harmonic oscillator + spin-orbit coupling.

 The relativistic version is a square-root problem corresponding
to Dirac equation with non-minimal coupling.

* Open gquestions: interaction effects; experimental realizations;
characterization of topo-properties with harmonic potentials
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