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Particle-hole symmetry and interaction effects in the Kane-Mele-Hubbard model
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We prove that the Kane-Mele-Hubbard model with purely imaginary next-nearest-neighbor hoppings has a
particle-hole symmetry at half filling. Such a symmetry has interesting consequences including the absence of
charge and spin currents along open edges, and the absence of the sign problem in the determinant quantum Monte
Carlo simulations. Consequentially, the interplay between band topology and strong correlations can be studied at
high numeric precisions. The process that the topological band insulator evolves into the antiferromagnetic Mott
insulator as interaction strength increases is studied by calculating both the bulk and edge electronic properties.
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I. INTRODUCTION

The precise quantization of the Hall conductance in the
integer quantum Hall states is protected by the nontriv-
ial topology of band structures. This topological property
is characterized by the Thouless-Kohmoto-Nightingale-den
Nijs (TKNN) number, or the Chern number,1,2 which takes
nonzero values only when time-reversal symmetry is broken.
In recent years, tremendous progress has been achieved in
a new class of topologically nontrivial band insulators in
the presence of time-reversal symmetry, which are termed
topological insulators.3–13 Topological insulators exist in both
two (2D) and three dimensions (3D) and are characterized
by the Z2 topological index. These topological states have
robust gapless helical edge modes with an odd number of
channels in 2D7,14,15 and an odd number of surface Dirac
cones in 3D.11–13 Topological insulators have been exper-
imentally observed in 2D quantum wells through transport
measurements16 and also in 3D systems of BixSb1−x , Bi2Te3,
Bi2Se3, and Sb2Te3 through angle-resolved photoemission
spectroscopy17–20 and the absence of backscattering in scan-
ning tunneling spectroscopy.21–23

Interaction effects in topological insulators remain an open
question. Due to their gapped nature, topological insulators
remain stable against weak interactions. However, strong
interactions may change their topological properties. For 2D
topological insulators, it has been found that two-particle
correlated backscattering, which is an interaction effect and
is allowed in the time-reversal-invariant Hamiltonian, can
gap out the helical edge states by spontaneously developing
magnetic ordering under strong repulsive interactions.14,15 In
this case, time-reversal symmetry is spontaneously broken
along edges, although the bulk remains paramagnetic. At
mean-field level, interaction effects can destabilize the quan-
tum anomalous Hall state of the Haldane-Hubbard model24 and
the 2D topological insulating state of the Kane-Mele-Hubbard
(KMH) model25 by developing long-range charge density
wave and antiferromagnetic orders, respectively.25 Interactions
can also change the topologically trivial band structures into
nontrivial ones at mean-field level by developing bulk order
parameters.26–29 Due to the difficulty of analytic studies
on strong correlation physics, exact results from numeric
simulations are desirable. Recently, an exact diagonalization
has been carried on the spinless Haldane-Hubbard model.30 A

first-order phase transition between the quantum anomalous
Hall insulating state and topologically trivial Mott insulating
state is found.

Quantum Monte Carlo (QMC) simulations play an impor-
tant role in studying strongly correlated systems.31–34 A major
obstacle to applying QMC to fermion systems is the notorious
sign problem. In the particular method of the determinant
QMC, the 4-fermion interaction terms are decoupled through
the Hubbard-Stratonovich (HS) transformation and fermions
are able to be integrated out. The resultant fermion determi-
nant, generally speaking, is not positive-definite, which is the
origin of the notorious sign problem. This problem prevents
QMC simulations from achieving a good numerical precision
at low temperatures and large sample sizes. Nevertheless, in
a number of interacting models, the sign problem disappears.
As presented in Ref. 35, these models include the negative-
U Hubbard model, the positive-U Hubbard model at half
filling and in bipartite lattices, and a class of models whose
interactions can be decomposed in a time-reversal-invariant
way.

We find that the Kane-Mele model augmented by the Hub-
bard interaction with purely imaginary next-nearest-neighbor
hoppings has a particle-hole symmetry. Such a symmetry
has interesting consequences such as the absence of edge
charge and spin currents, which shows the edge currents
are not a reliable criterion for topological properties. More
importantly, the particle-hole symmetry ensures the absence
of the sign problem in the quantum Monte Carlo simulations.
This provides a wonderful opportunity to study interaction
effects in topological insulating systems. In this article, we
perform a determinant QMC study on the stability of the
topological insulating state of the KMH model with the strong
Hubbard interaction U . Antiferromagnetic long-range order
has been found at large values of U . Consequently, the quantum
phase diagram of the KMH model can be classified into
paramagnetic bulk insulating phases and antiferromagnetic
Mott insulating phases. When we further consider the stability
of helical edges with infinitesimal two-particle backscattering,
which is not contained in the KMH model but is generally
allowed by time-reversal symmetry, the paramagnetic bulk
insulating phase can be divided into two regimes according
to their edge-state Luttinger parameters.14 The topological
band insulator with stable helical edges is stable in the weak
interaction regime, while the helical edges become unstable
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by two-particle correlated backscattering at the intermediate
interaction regime. We have also studied the nature of the
spin-liquid phase in the pure Hubbard model with λ = 0,
showing that it is neither a spontaneous Haldane-type quantum
anomalous Hall insulator nor a Kane-Mele-type quantum spin
Hall insulator. Near the completion of this paper, a similar work
on the QMC simulation on the KMH model was performed by
Hohenadler et al.36

This article is organized as follows. In Sec. II, we prove
the absence of the sign problem in the KMH model under
certain conditions. In Sec. III, we present simulations on the
developing of antiferromagnetic long-range orders in the bulk.
In Sec. IV, the edge properties are studied including both the
edge single-particle excitations and the edge spin correlations.
In Sec. V, we present the simulation of the charge and spin
current orders in the pure Hubbard model on the honeycomb
lattice. Conclusions are given in Sec. VI.

II. GENERAL PROPERTIES OF THE KMH MODEL

The Kane-Mele model is a straightforward generalization
of the Haldane model on the honeycomb lattice7 defined as

H0 = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + iλ

∑
〈〈i,i ′〉〉α,β

{c†iασz,αβci ′β

− c
†
i ′ασz,αβciβ} − μ

∑
i,σ

c
†
iσ ciσ , (1)

where t is the nearest-neighbor (NN) hopping integral as scaled
to 1 below; λ is the next-nearest-neighbor (NNN) spin-orbit
hopping integral; μ is the chemical potential. In the general
case of the Kane-Mele model, the NNN hoppings for the spin-↑
and -↓ electrons are complex valued and complex conjugate
to each other. As a special case, the NNN hopping in Eq. (1) is
purely imaginary. The Hubbard interaction is defined as usual:

Hint = U
∑

i

[
ni↑ − 1

2

][
ni↓ − 1

2

]
. (2)

In this section, we will present the symmetry properties of
Eqs. (1) and (2), and prove the absence of the sign problem in
the determinant QMC.

A. Particle-hole symmetry

Equations (1) and (2) have the particle-hole symmetry at
μ = 0 as explained below. We define the transformation as
usual:

c
†
iσ −→ diσ = (−1)ic†iσ , ciσ −→ d

†
iσ = (−1)iciσ . (3)

Under this transformation, a Hermitian fermion bilinear oper-
ator connecting two sites belonging to two different sublattices
transforms as

c
†
iσ Kij cjσ + c

†
jσ (Kij )∗ciσ −→ d

†
iσ (Kij )∗djσ + d

†
jσ Kijdiσ ,

(4)

while that connecting two different sites in the same sublattice
transforms as

c
†
iσKii ′ci ′σ + c

†
i ′σ (Kii ′)

∗ci ′σ−→ − d
†
iσ (Kii ′)

∗di ′σ − d
†
i ′σKii ′di ′σ .

(5)

The on-site particle density transforms as

c
†
iσ ciσ − 1

2 −→ 1
2 − d

†
iσ diσ , (6)

where no summation over spin index is assumed in Eq. (6).
Clearly in Eq. (1), the NN hopping is real and the NNN hopping
is purely imaginary; thus its band structure is invariant at
μ = 0. Equation (2) is obviously invariant. The particle-hole
symmetry also implies that μ = 0 corresponds to half filling.

B. Absence of the charge and spin currents

An important conclusion based on the particle-hole sym-
metry is that both charge and spin currents vanish on all the
bonds for the KMH model of Eqs. (1) and (2) at μ = 0. This
result applies to arbitrary boundary conditions with broken
bonds but with the homogeneous on-site potential which
maintains the particle-hole symmetry on each site. The proof is
straightforward. Through the continuity equation, the current
operators of each spin component along the NN and NNN
bonds are defined as

J NN
ij,σ = it(c†iσ cjσ − c

†
jσ ciσ ),

(7)
J NNN

ii ′,σ = λ(c†iσ ci ′σ + c
†
i ′σ ciσ ),

respectively, where no summation over spin index is assumed.
Both J NN and J NNN are odd under the particle-hole trans-
formation; thus they vanish even with the open-boundary
condition. By the same reasoning, the charge current also
vanishes in the Haldane-Hubbard model with the purely
imaginary NNN-hoppings and the particle-hole symmetric
charge interactions of

HNN,int =
∑
ij

Vij

(
ni − 1

2

)(
nj − 1

2

)
. (8)

This result shows that edge charge and spin currents are
not good criteria for quantum anomalous Hall and topolog-
ical insulators. In order to have a better understanding of
this counterintuitive result, we have considered the simplest
noninteracting Haldane model with the purely imaginary
NNN hoppings by diagonalization. There are indeed gapless
one-dimensional single-particle chiral edge modes clearly seen
from the spectra as commonly presented in the literature.
Clearly this branch of edge modes contributes to edge
currents. However, we find that the continuous bulk spectra
also contribute to edge currents. Perfect cancellation occurs
which results in zero current on each bond, including each
edge bond, although we know for sure that the band structure
is topologically nontrivial. For interacting models, there are
no well-defined single-particle states. We cannot separate the
edge and bulk contributions anymore. Nevertheless, we expect
that current correlation functions should exhibit differences
between topological insulators and trivial insulators.

Another conclusion inferred from the particle-hole symme-
try is that the average particle density for each spin component
on each site is strictly 1

2 even when the translational symmetry
is broken. For example, it applies to any disordered pattern of
the hopping integrals, as long as the NN hoppings are real and
the NNN hoppings are purely imaginary.

Edge currents do appear if the particle-hole symmetry is
broken. For example, for the noninteracting Haldane model
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with generally complex-valued NNN hoppings, edge currents
appear along open boundaries. So far we only consider
the sharp edges of broken bonds but with homogeneous
on-site potential. For edges with the confining single-particle
potential, the particle-hole symmetry is broken which also
results in edge currents. In particular, for a weak linear external
potential, the linear response should still give rise to quantized
Hall conductance in the insulating region.

C. Absence of the QMC sign problem

The Hubbard model on the honeycomb lattice, which
corresponds to the case of λ = 0 of Eqs. (1) and (2), has been
recently simulated at half filling.37 As the Hubbard U increases
from zero to a moderate value and then the strong-coupling
regime, the ground state emerges from a semimetal phase
to a new spin-liquid phase and then to the antiferromagnetic
insulating phase. Below we will prove that the sign problem
still vanishes with nonzero values of λ.

Just as Ref. 37 does, we employ a discrete HS transfor-
mation which respects the SU(2) symmetry for every fixed
HS field configuration by decoupling in the density channel.
We rewrite the Hubbard interaction and decompose it in the
density channel by using imaginary numbers as

e−�U (n↑+n↓−1)2/2 =
∑

l=±1,±2

γi(l)e
iηi (l)

√
�τ U

2 (n↑+n↓−1)

+O(�τ 4), (9)

where the discretized HS fields take values of γ (±1) =
1 + √

6/3, γ (±2) = 1 − √
6/3; and η(±1) = ±

√
2(3 − √

6),
η(±2) = ±

√
2(3 + √

6).
For the convenience of presentation, we prove the absence

of the sign problem in the finite-temperature formalism
with β = 1/T . The proof for the zero-temperature projector
algorithm is similar. The partition function at half filling reads

Z =
∑
{l}

{(
Tr

1∏
p=M

e−�τ
∑

i,j c
†
i↑K

↑
ij cj↑ei

√
�τU/2

∑
i ηi,p(l)(c†i↑ci↑− 1

2 )

)

×
(

Tr
1∏

p=M

e−�τ
∑

i,j c
†
i↓K

↓
ij cj↓ei

√
�τU/2

∑
i ηi,p(l)(c†i↓ci↓− 1

2 )

)

×
∏
i,p

γi,p(l)

}
, (10)

where
∑

{l} sums over all the configurations of the discrete
HS fields ηi,p(l) and γi,p(l); i and p are indices of discretized
grids along the spatial and temporal directions, respectively;
Tr takes the trace of the fermion space; �τ is the discretized
time slice which is set to 0.05 in the simulations in this paper;
and M�τ equals the imaginary time β. By using the particle-
hole transformation defined in Eq. (3), we show that the on-
site particle density transforms according to Eq. (6); the NN-
hopping matrix kernel transforms according to Eq. (4); the
NNN-hopping matrix kernel transforms according to Eq. (5).

When the following two conditions are satisfied, the
fermion determinants of two spin components are complex

conjugate to each other; thus the product of them is positive-
definite:

Kσ
ij = (

Kσ̄
ji

)∗ = Kσ̄
ij for NN hopping;

(11)
Kσ

ij = − (
Kσ̄

ji

)∗ = −Kσ̄
ij for NNN hopping.

Apparently, Eqs. (1) and (2) satisfy these conditions and thus
are sign-problem free.

Please note that the KMH mode is sign-problem free
only when the NNN hopping is purely imaginary. Generally
speaking, the interacting model without the sign problem can
have complex-valued hoppings with opposite signs, which still
gives rise to opposite Chern numbers for the band structures
of spin-↑ and -↓, respectively. However, they are not related
by time-reversal symmetry anymore.

III. THE QMC STUDY ON THE BULK PROPERTIES
OF THE KMH MODEL

The Hubbard model on the honeycomb lattice, which
corresponds the case of λ = 0 in Eqs. (1) and (2), has
been simulated in Ref. 37. When U increases from zero,
the single-particle charge gap appears at U = 3.7, while the
antiferromagnetic long-rang order emerges at U = 4.3. The
mismatch reveals an exotic spin-liquid phase in between.
When the intrinsic spin-orbit coupling, i.e., the NNN hopping
term in Eq. (1), enters, the model describes the topological
band insulator. It already has a band gap even at U = 0. As
increasing U , the antiferromagnetic structure factor is still
a good quantity to tell when the magnetic long-range order
appears. However, the bulk gap is no longer an appropriate
quantity to judge a possible transition from the topological
band insulator to an antiferromagnetic Mott insulator. Here we
use the local single-particle gap on edge sites as an indicator of
the stability of edge states and topological properties. We also
study the edge effects to antiferromagnetic correlations. In this
section, we will simulate the bulk antiferromagnetic structure
factor, and leave the study of edge properties to Sec. IV.

A. Sampling parameters of our simulations

Based on the above proof of the absence of the sign problem,
we perform the QMC simulation for the KMH model at zero
temperature by using the projective method.38 We perform
measurements from 10 different random number series and
each independent measurement has 500 sample sweeps after
warming up; the discrete imaginary time step �τ is set to be
0.05. In this section, we use periodic boundary conditions for
bulk properties calculation, e.g., the bulk antiferromagnetic
structure factor.

B. The developing of the bulk antiferromagnetic
long-range order

The spin-orbit NNN hopping in Eq. (1) breaks the SU(2)
symmetry but preserves the conservation of Sz. As a result, the
antiferromagnetic correlation of Sz should be different from
those of Sx and Sy . In the large-U limit, the NNN hopping
generates an anisotropic exchange as

Hex,NNN = −J ′(Sx
i Sx

i ′ + S
y

i S
y

i ′ − Sz
i S

z
i ′
)

(12)
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FIG. 1. (Color online) The comparison between the antiferromag-
netic structure factors Szz

AF along the z axis and Sxx
AF in the x,y plane at

λ = 0.1 for the size of N = 2 × L × L with L = 6. The easy-plane
feature is clear.

with J ′ = 4λ2/U , which is ferromagnetic in the x,y plane and
antiferromagnetic along the z direction.25 As the combined
effect from the NNN anisotropic exchange and NN isotropic
antiferromagnetic exchange, the magnetic exchange along the
z axis is frustrated while those along the x and y axes are not.
Thus the Néel ordering favors the easy x,y plane.

Our QMC simulations have confirmed this picture. The
antiferromagnetic structure factor along the x direction (xx-
AFSF) and the z direction (zz-AFSF) are defined as

Sxx
AF = 1

N
〈G|

[ ∑
i

(−1)iSx
i

]2

|G〉,
(13)

Szz
AF = 1

N
〈G|

[ ∑
i

(−1)iSz
i

]2

|G〉,

where 〈G|..|G〉 means average over the ground state; N =
2 × L × L is the number of sites; L is the size; (−)i takes the
values of ±1 for the A and B sublattices, respectively. The
comparison between Sxx

AF and S
yy

AF is plotted in Fig. 1, which
clearly shows the easy-plane feature.

Below we will use the xx-AFSF to describe the antifer-
romagnetic properties and perform the simulation at λ = 0.1
with different values of U and sample sizes of L = 3,6,9,12.
The extrapolation to the thermodynamic limit for different
Hubbard U is plotted in Fig. 2. It can be seen that the magnetic
long-range order emerges at Uc = 4.9 ± 0.1 for λ = 0.1. In
Fig. 3 we present the QMC simulation on the magnetic phase
diagram of the KMH model in the parameter space of (U,λ).
The phase boundary separating the AF long-range-ordered
phase and nonmagnetic phases is marked for various values of
λ. The spin-orbit coupling opens the band gap at the order of
λ; thus the interaction effect U becomes important only when
U is larger than λ. As a result, the critical value of Uc for the
onset of the AF phase increases with λ.

The phase diagram Fig. 3 exhibits a large regime of
nonmagnetic insulating state outside the AF phase at λ 
=
0. At small values of U , it should be the Z2 topological

FIG. 2. (Color online) The finite-size scaling of the xx antifer-
romagnetic structure factors calculated at λ = 0.1 for the sizes of
N = 2 × L × L (L = 3,6,9, and 12), and the different values of U

indicated in the inset. Finite values of Sxx
AF/N in the thermodynamic

limit appear at U � Uc with Uc ≈ 4.9.

band insulator which is stable against weak interactions. As
increasing U , it enters the AF Mott insulating phase at a
critical line of Uc. In an updated version of Ref. 36, it is
found that the spin-liquid phase also extends to a small but
finite value of λ. However, the nature of this spin-liquid
state remains unclear. The bulk paramagnetic regime actually
has rich internal structures. According to the stability of the
helical edge states with respect to the two-particle spin-flip
backscattering, this paramagnetic insulating phase is divided
into two different regimes with the effective edge Luttinger
parameter K < (>) 1

2 , respectively. The analysis is presented
below in Sec. IV C.

FIG. 3. (Color online) The QMC simulation of the phase diagram
of the KMH model. The antiferromagnetically long-range-ordered
phase appears at strong correlation regime. The paramagnetic phase
is divided into two regimes: topological band insulator (TBI) with
stable helical edges, and bulk paramagnetic phase with unstable edges
(see further discussions in Sec. IV C). The two critical values of U at
λ = 0 are from Ref. 37 by Meng et al., which are also confirmed in
our QMC simulations.
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FIG. 4. (Color online) The KMH model in the lattice with the
zigzag edges. The boundary conditions are periodical and open along
the x and y directions, respectively. The NNN bonds between two
closest tips on the zigzag edges are removed.

IV. THE QMC STUDY OF THE EDGE PROPERTIES
OF THE KMH MODEL

We believe that the edge properties are crucial to expose
the topological aspect of the KMH model. In this section, we
will show that the antiferromagnetic correlations along the
edge becomes strongly relevant as the Hubbard U increases
while the bulk remains paramagnetic. We consider the lattice
configuration plotted in Fig. 4 with the periodical and open
boundary conditions along the x and y directions, respectively.

A. The single-particle excitations

As proved in Sec. II, the edge currents, both for charge and
spin, are always zero due to the particle-hole symmetry. We
use another quantity, the local single-particle excitation gap on
edge sites, to check whether the edges are gapped or gapless.
It can be extracted from the tail of the on-site time-displaced
Green’s function on the edge ln G(i,i; τ ) ∼ �edgeτ , which is
defined by

G(i,i; τ ) = 1

L
〈G|

∑
i∈tip

c
†
i↑(τ )ci↑(0) + c

†
i↓(τ )ci↓(0)|G〉, (14)

where |G〉 is the many-body ground state. The dependency of
ln G(i,i; τ ) with τ for the site i on the tip of the zigzag edges is
plotted in the inset of Fig. 5, where the long tail of ln G(i,i; τ )
shows a linear behavior with τ and the slope measures the
excitation gap. Here the lattice has a ribbon geometry with
ny zigzag rows. We fix the width of the ribbon ny = 8 and
increase its length. The extrapolations of the edge excitation
gaps with L are depicted in Fig. 5 with λ fixed at 0.1 and
different values of U < Uc. Clearly increasing U significantly
reduces the weight of the low-energy spectra.

The bosonization analysis of the stability of the helical
edge states has been performed in Refs. 14 and 15. For the
parameter regime of Fig. 5, the bulk remains paramagnetic,
or, time-reversal invariant. For the current KMH model, Sz is
conserved which prohibits the existence of the two-particle

FIG. 5. (Color online) The extrapolation of local single particle
gap for the tip sites on the zigzag edges of a ribbon geometry with
the size of 2 × L × ny with ny = 8. In the inset, the logarithms of
on-site time-displaced Green’s functions ln G(i,i; τ ) of the tip sites
is depicted for U = 2. The slopes of the long time tails measure the
edge excitation gap �edge. Here λ is set to be 0.1 in this calculation.
We want to emphasize that the finite gap in the bulk paramagnetic
phase is a limitation of system size, as the edge should be gapless due
to U (1) symmetry.

spin-flip scattering term to open the gap. The Luttinger-liquid
theory of such a helical edge branch, i.e., the right and left
movers are with opposite spin polarizations, is characterized
by only one Luttinger parameter K , which describes the
forward scattering between these two branches. Due to the
helical nature of the edge states, the long-wavelength charge
fluctuations and the z component of the spin fluctuations
are not independent but are conjugate to each other. Both
of them are gapless in the thermodynamic limit, and so are
the single-particle edge excitations. The on-site imaginary
time single-particle Green’s function decays as 1/τα with the
exponent

α = K + 1/K. (15)

At K � 1, the low-energy density of states does not open a
full gap but is depleted according to a power law, and thus
exhibits a pseudogap behavior. The nonzero gap values in
Fig. 5 may be an artifact of finite-size scaling and a result
of tunneling between two opposite edges. A more detailed
numerical analysis is needed to further clarify the nature of
the single-particle excitations.

B. Edge spin structure factors

We further investigate the edge effects to the antiferromag-
netic correlations. We define the antiferromagnetic structure
form factor for each zigzag row parallel to the zigzag boundary
as

Sxx
Zigzag,AF(m) = 1

2L
〈G|

[ ∑
i

(−1)iSx
m,i

]2

|G〉, (16)
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FIG. 6. (Color online) The row xx-AFSF defined in Eq. (16) for
each zigzag rows parallel to the boundary. The parameters values are
λ = 0.1; the sample size 2 × L × L with L = 8; and the different
values of U are indicated in the inset. The row indices 1 and 8
correspond to the boundary rows, and those of 4 and 5 corresponds
to the central rows.

where m is the index of the zigzag row, i is the site index along
the mth zigzag line, and 2L is the number of sites in each row.
The xx-AFSF for all the rows are depicted in Fig. 6.

It is interesting to observe that the AF correlations are
strongest on the edges and become weaker inside the bulk. This
effect is most prominent at small and intermediate values of
U , because the single-particle band gap due to λ is suppressed
around the edges, which enhances the interaction effects.
When U � Uc ≈ 4.9, the bulk antiferromagnetism develops.
The antiferromagnetic correlations along both the edge and
central rows are enhanced by U . However, their difference is
suppressed due to the disappearance of the helical edge states.

The finite-size scaling of the xx-AFSF for the edge rows
for different values of U is presented in Fig. 7. Compared
with the xx-AFSF calculated in the bulk (Fig. 2), the edge
antiferromagnetic correlations are much stronger than those
of the bulk. Although the extrapolation to the infinite size in
Fig. 7 implies a finite value of the Néel order of Sx on the edge,
we believe that it is an artifact due to the power-law scaling of
the AF correlations. The 1D nature of the edge states and the
conservation of Sz prohibits the true long-range Néel ordering
of Sx,y but allows the quasi-long-range ordering, which is
confirmed in the two-point spin correlations in Sec. IV C.

C. The stability of the helical edges

According to the bosonization analysis in Ref. 14, the
scaling dimension of the 2kf Néel order of the x,y components
is K; thus their equal-time correlations decay as 1/|x − x ′|2K .
If the condition of the conservation of Sz is released, a time-
reversal-invariant two-particle correlated spin-flip backscatter-
ing term is allowed as

Hbg,2pct =
∫

dxψ
†
R↑∂xψ

†
R↑ψL↓∂xψL↓ + H.c. (17)

FIG. 7. (Color online) The finite-size scaling of the xx-AFSF
defined in Eq. (16) for the edge row with λ = 0.1. The size of this
ribbon is 2 × L × 4. We emphasize that due to the 1D nature of
the edge and the U (1) spin symmetry, this scaling actually shows the
power-law correlation rather than the true long-range order. The finite
intercepts are mainly due to small-size effects.

At the particle-hole symmetric point of the KMH model that
we are simulating, the above term becomes the Umklapp
term which conserves the lattice momentum. Such a term
reduces the U (1) spin symmetry down to Z2. It has the scaling
dimension 4K and becomes relevant at K < Kc = 1/2. In this
case, it opens a gap by developing the long-range 2kf magnetic
ordering of Sx or Sy . Even for the cases that the two-particle
spin-flip backscattering are random disordered or at a single
site, they still can destabilize the helical edge states at smaller
values of the Luttinger parameter K .14

According to the above analysis, the bulk paramag-
netic regime at weak and intermediate coupling strengths
should be divided into two regimes. At weak interactions,
the helical edge states are stable against interaction effects.
The two-particle backscattering terms only have perturbative
effects. On the other hand, at intermediate levels of interaction
strength, interaction effects are nonperturbative which breaks
time-reversal symmetry along edges and thus destroys the
helical edges. We emphasize that this destabilizing of helical
edges occurs when the bulk remains paramagnetic and time-
reversal invariant.

To numerically verify this picture, we present the calcula-
tion of the real-space equal-time two-point correlations along
the zigzag edge in Fig. 8. Since each unit cell contains two
nonequivalent sites, we denote the sites on the tips of the edge
as A sites and the other slightly inner sites as B sites. The
correlation functions are defined as

CAA(r,r ′) = 〈G|SA
x (�r)SA

x (�r ′)|G〉,
CBB(r,r ′) = 〈G|SB

x (�r)SB
x (�r ′)|G〉,

(18)
CAB(r,r ′) = 1

2

{〈G|SA
x (�r)SB

x (�r ′)|G〉
+ 〈G|SB

x (�r)SA
x (�r ′)|G〉},

where �r and �r ′ are along the zigzag edge. The simulated
results for λ = 0.1 are plotted at different values of U in
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FIG. 8. (Color online) The two-point equal-time spin correlation
functions along the zigzag edge with λ = 0.1 at values of U denoted
in the insets. The size of the ribbon is 2 × 34 × 4. Because the zigzag
edge contains the sites of both A and B type, three different types of
correlations are plotted in (a), (b), and (c), respectively. The Luttinger
parameters are fitted from the correlation among A sites on the tips
as K ≈ 0.8,0.5, and 0.4 for U = 1,1.5, and 2, respectively.

the bulk paramagnetic regime. The edge-spin correlation
exhibits the ferrimagnetic correlations among A and B sites
because the edge breaks the equivalence between A and B
sites. The magnetic correlations are stronger among the outer
A sites, and are weaker among the inner B sites. All of these
correlations obey the power law and their decay exponents
(α) are fitted. As U increases further toward to the bulk

antiferromagnetic regime, the difference between AA and BB
correlations becomes weaker.

Due to the domination of the magnetic correlation at A
sites, we use the decay exponents of CAA to fit the effective
Luttinger parameter K for the helical edge. The three plots in
Fig. 8(a) at U = 1,1.5, and 2 give rise to K = 1

2α ≈ 0.8,0.5,
and 0.4, respectively. The case of U = 1 belongs to the
topological band insulating phase in which interaction effects
are perturbative. For the case of U = 2 at which the bulk
remains nonmagnetic, although the edge remains gapless,
this is only because of the conservation of Sz which is not
an essential symmetry of topological insulators. As long
as the above Umklapp term Eq. (17) is introduced, which
unfortunately cannot be simulated by our QMC method, the
gapless helical edge states are destabilized. We argue that the
system enters a new phase with paramagnetic bulk but unstable
edges. The transition point between these two paramagnetic
phases at λ = 0.1 lies at U ≈ 1.5 with K ≈ 0.5.

We have calculated the edge-spin correlations for other
values of spin-orbit coupling and interaction parameters to
map the boundary with K = 0.5 between two different bulk
paramagnetic phases. The boundary is plotted in Fig. 3. As λ

decreases, the dispersion of the edge spectra becomes more
flat and interaction effects become stronger. As a result,
the boundary shifts to lower values of U . In particular at
λ = 0, the edge spectra become exactly flat; we expect edge
ferromagnetism at infinitesimal U due to the density of state
divergence. Thus the boundary should pass the origin. In
particular, the edge ferromagnetism of the graphene ribbon
has been simulated.

V. ABSENCE OF SPIN-ORBIT ORDER IN
SPIN-LIQUID PHASE AT λ = 0

Since Meng et al.37 claimed the existence of a spin-liquid
phase for the Hubbard model (λ/t = 0) at 3.7 < U/t < 4.3
(see Fig. 3), there has been considerable interest and debate on
the nature of this phase. One possibility of such a phase is that
it could be a relative spin-orbit symmetry-breaking phase with

FIG. 9. (Color online) The definition of the positive direction for
the NNN bonds on the honeycomb lattice, based on which the NNN
current form factors QAF

C and QAF
S are defined in Eq. (19).
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FIG. 10. (Color online) The finite-size scaling of the form factors
of the NNN currents in the charge sector QAF

c and QAF
S in the spin

sector as defined in Eq. (19). The periodical boundary condition is
employed. The sample size is N = 2 × L × L with L = 3,6,9, and
12. λ is set 0 in this calculation, and U = 3, 4, and 5.

a nontrivial mean-field band structure.39 If this is the case, a
finite λ/t behaves like an external field to pin down the order
parameter along the external spin-orbit configuration. Then the
semimetal and spin-liquid phase are indistinguishable at finite
λ/t . In this section, we will check the form factor of such a
spin-orbit order parameter between NNN sites at λ = 0, and
find negative results.

Without loss of generality, we only consider the horizon-
tal bonds. We define the positive directions for the NNN
horizontal bonds as depicted in Fig. 9. Two different NNN
current orders are designed, including the charge flux order
and the Kane-Mele-type spin-orbit order, or, equivalently, the
spin-current flux order. Their form factors are denoted as QAF

C

and QAF
S and are defined as

QAF
C = 1

N
〈G|

{∑
i

(−1)iJ C
i,i+�ex

}2

|G〉,
(19)

QAF
S = 1

N
〈G|

{∑
i

(−1)iJ S
i,i+�ex

}2

|G〉,

where (−)i takes the values of 1 or −1 for site i in
the A and B sublattices, respectively; the charge cur-
rent JC

i,i+�ex
= J NNN

i,i+�ex ;↑ + J NNN
i,i+�ex ;↓, and spin current J S

i,i+�ex
=

J NNN
i,i+�ex ;↑ − J NNN

i,i+�ex ;↓; �ex is the NNN vector along the horizontal
direction. Please note that the bond current operator here
J NNN

i,i+�ex ;σ is different from that in Eq. (7) as

J NNN
i,i+�ex ;σ = i{c†i,σ ci+�ex ,σ − H.c.}, (20)

where no summation over σ is assumed.

We have performed the simulation of the NNN charge and
spin-current form factors defined in Eq. (19) for the Hubbard
model at λ = 0 . The extrapolations of the form factors to the
infinite lattice size are depicted in Fig. 10. The curves represent
three typical Hubbard U values U = 3,4, and 5, which fall in
the semimetal phase, spin-liquid phase, and Mott insulating
phase, respectively. For all three parameters, both the charge
and spin NNN current antiferromagnetic form factors vanish
in the thermodynamic limit, indicating the absence of the
NNN charge and spin-current orders in all these three phases,
especially the spin-liquid phase. The nature of this spin-liquid
phase, whether it is actually a subtly ordered phase or a
genuinely exotic phase with nontrivial topological properties,
remains an unsolved question.

VI. CONCLUSIONS

We have studied the particle-hole symmetry in the KMH
model, which results in the absence of the charge and
spin currents and the absence of the quantum Monte Carlo
sign problem. The determinant QMC simulations have been
performed for both the bulk and edge properties. The bulk
antiferromagnetic long-range order appears at large values of
U . With the open boundary condition, the antiferromagnetic
correlation is strongest along the edges. We also discussed the
stability of helical edges in the paramagnetic insulating phase
when turning on the infinitesimal two-particle backscattering
term, which can be introduced by time-reversal-invariant but
nonconservation-of-Sz interaction terms, e.g., Rashba terms.
The paramagnetic insulating phase in Fig. 3 can be classified
into two regimes of weak and intermediate interactions,
respectively. In the weak-interaction regime, the helical edge
states remain gapless which is robust against the two-particle
backscattering; in the intermediate-interaction regime, the
edge states can spontaneously break time-reversal symmetry
by developing magnetic ordering along the edge by the two-
particle backscattering term. Since this destabilizing helical
edge occurs when the bulk remains time-reversal invariant, it
is an interesting and open question whether the nontrivial bulk
Z2 topology is still maintained in this regime.

We also checked that the spin-liquid phase in the Hubbard
model at λ = 0 on the honeycomb lattice is neither a spon-
taneously developed Haldane-type quantum anomalous Hall
insulator nor the Kane-Mele-type quantum spin Hall insulator.
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L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766
(2007).

17D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, Nature (London) 452, 970 (2008).

18D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder,
F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, Science 323, 919 (2009).

19Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,
D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature Phys. 5,
398 (2009).

20Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo,
X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang,
I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178
(2009).

21P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian,
A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature
(London) 460, 1106 (2009).

22Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen,
Z. X. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett. 104,
016401 (2010).

23T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang,
H. Zhang, X. Dai, Z. Fang, X. Xie, and Q.-K. Xue, Phys. Rev. Lett.
103, 266803 (2009).

24Z. Cai, S. Chen, S. Kou, and Y. Wang, Phys. Rev. B 78, 035123
(2008).

25S. Rachel and K. Le Hur, Phys. Rev. B 82, 075106 (2010).
26S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev.

Lett. 100, 156401 (2008).
27K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett.

103, 046811 (2009).
28Y. Zhang, Y. Ran, and A. Vishwanath, Phys. Rev. B 79, 245331

(2009).
29J. Wen, A. Ruegg, C. C. Joseph Wang, and G. A. Fiete, Phys. Rev.

B 82, 075125 (2010).
30C. N. Varney, K. Sun, M. Rigol, and V. Galitski, Phys. Rev. B 82,

115125 (2010).
31R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D

24, 2278 (1981).
32J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).
33S. Chandrasekharan and U.-J. Wiese, Phys. Rev. Lett. 83, 3116

(1999).
34S. E. Koonin, D. J. Dean, and K. Langanke, Phys. Rep. 278, 1

(1997).
35C. Wu and S.-C. Zhang, Phys. Rev. B 71, 155115 (2005).
36M. Hohenadler, T. C. Lang, and F. F. Assaad, Phys. Rev. Lett. 106,

100403 (2011).
37Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and A. Muramatsu,

Nature (London) 464, 847 (2010).
38F. F. Assaad and H. G. Evertz, in Computational Many-

Particle Physics, Lecture Notes in Physics 739, edited by
H. Fehske, R. Schneider, and A. Weiße (Springer, Berlin, 2008),
p. 277.

39S. Kivelson (private communication).

205121-9

http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.79.195321
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1103/PhysRevLett.104.016401
http://dx.doi.org/10.1103/PhysRevLett.104.016401
http://dx.doi.org/10.1103/PhysRevLett.103.266803
http://dx.doi.org/10.1103/PhysRevLett.103.266803
http://dx.doi.org/10.1103/PhysRevB.78.035123
http://dx.doi.org/10.1103/PhysRevB.78.035123
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevLett.103.046811
http://dx.doi.org/10.1103/PhysRevLett.103.046811
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1103/PhysRevB.82.075125
http://dx.doi.org/10.1103/PhysRevB.82.075125
http://dx.doi.org/10.1103/PhysRevB.82.115125
http://dx.doi.org/10.1103/PhysRevB.82.115125
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevB.31.4403
http://dx.doi.org/10.1103/PhysRevLett.83.3116
http://dx.doi.org/10.1103/PhysRevLett.83.3116
http://dx.doi.org/10.1016/S0370-1573(96)00017-8
http://dx.doi.org/10.1016/S0370-1573(96)00017-8
http://dx.doi.org/10.1103/PhysRevB.71.155115
http://dx.doi.org/10.1103/PhysRevLett.106.100403
http://dx.doi.org/10.1103/PhysRevLett.106.100403
http://dx.doi.org/10.1038/nature08942

